
Physically-Based Real-Time Lens Flare Rendering

Matthias Hullin1 Elmar Eisemann2,3 Hans-Peter Seidel1,3 Sungkil Lee4,1

1 MPI Informatik 2 Télécom ParisTech 3 Saarland University 4 Sungkyunkwan University

Figure 1: Complex lens flare generated by a Canon zoom lens. Left: reference photos. Right: renderings generated using our technique at
comparable settings. Even with many unknowns in the lens design and scene composition, as well as manufacturing tolerances in the real lens,
the renderings closely reproduce the “personality” of the flare.

Abstract

Lens flare is caused by light passing through a photographic lens
system in an unintended way. Often considered a degrading artifact,
it has become a crucial component for realistic imagery and an artis-
tic means that can even lead to an increased perceived brightness.
So far, only costly offline processes allowed for convincing simu-
lations of the complex light interactions. In this paper, we present
a novel method to interactively compute physically-plausible flare
renderings for photographic lenses. The underlying model covers
many components that are important for realism, such as imperfec-
tions, chromatic and geometric lens aberrations, and antireflective
lens coatings. Various acceleration strategies allow for a perfor-
mance/quality tradeoff, making our technique applicable both in
real-time applications and in high-quality production rendering. We
further outline artistic extensions to our system.

CR Categories: I.3.3 [Computer Graphics]: Image Generation

Keywords: Lens flare, Real-time rendering

Contact to authors:
{hullin hpseidel}@mpi-inf.mpg.de
elmar.eisemann@telecom-paristech.fr
sungkil@skku.edu (Corresponding author)

1 Introduction

Lens flare is an effect caused by light passing through a photographic
lens in any other way than the one intended by design—most im-
portantly through interreflection between optical elements (ghost-
ing). Flare becomes most prominent when a small number of very
bright lights is present in a scene. In traditional photography and
cinematography, lens flare is considered a degrading artifact and
therefore undesired. Among the measures to reduce stray light in an
optical system are optimized barrel designs, anti-reflective coatings,
and lens hoods.

On the other hand, flare-like effects are often used deliberately to
suggest the presence of very bright light sources, hence increasing
the perceived realism. In fact, nowadays the use of lens flare is
every bit as popular in games as it is in image and video editing.
For the production of computer-generated movies, great effort has
been taken to model cinema lenses with all their physical flaws and
limitations [Pixar 2008].

The problem of rendering lens flare has been approached from two
ends. A very simple and efficient, but not quite accurate, technique
is the use of static textures (starbursts, circles, and rings) that move
according to the position of the light source, and are composited
additively to the base image. Flares generated from texture billboards
can look convincing in many situations, yet they fail to capture the
intricate dynamics and variations of real lens flare.

At the other end of the scale, sophisticated techniques have been
demonstrated that involve ray or path tracing through a virtual lens
with all of its optical elements. The results are near-accurate but
very costly to compute, with typical rendering times in the order of
several hours per frame on a current desktop computer. Furthermore,
many samples end up being blocked in the lens system, which wastes
much of the computation time and leads to slow convergence. Also,
the solution only holds within the limits of geometric optics. Some
phenomena encountered in real lens flares, however, are caused by
wave-optical effects. Integrating them into a ray-optical framework
is by no means trivial and further increases the computational cost.



By combining sparse ray tracing and rasterization, our rendering
technique can simulate lens flares of complex lens designs, achiev-
ing a high degree of realism at interactive frame rates. Chromatic
and geometric lens aberrations are reproduced naturally and can be
extended by more advanced effects.

Precisely, we make the following contributions:
• a model for realistic lens flare;
• an efficient algorithm that allows a fine-tuned tradeoff between

quality and efficiency;
• plausible approximations for difficult-to-handle imperfections.

The latter also represents a means for stylization. We show that
expressive lens flare is a natural extension of our work.

2 Previous Work

Computer graphics research often focuses on the simulation of light
exchange and interaction inside a virtual environment. While such
computations can deliver physically-plausible imagery, a certain
lack of realism remains where simplified camera models fall short of
their real counterparts. Many effects (e.g., depth of field or motion
blur) are crucial components for realistic image synthesis and many
researchers underlined the need to focus more closely on camera
specificities [Kolb et al. 1995; Lee et al. 2010; Steinert et al. 2011].

More faithful camera or lens-system simulation also covers stray
light which adds a significant amount of realism to the rendering. It
can in part be caused by dust or imperfections in the lens system,
but the most prominent features of lens flare originate from internal
reflections (ghosting) [Kingslake 1992].

What makes the simulation of lens flare attractive is the observation
that humans are trained to interpret the presence of flare and veiling
glare as an indication of extreme brightness. This perceptual effect
can be used to seemingly exceed the physical boundaries of a dis-
play device [Ritschel et al. 2009], leading to its strong use in, e.g.,
movies [Pixar 2008], or recent games [Wenzel 2005].

Previous interactive techniques relied on significant approximations.
Kilgard [2000] suggested the use of texture sprites that are blended
into the framebuffer and arranged on a line through the screen center,
following an ad hoc displacement function. King [2001] varied
sprite size and opacity depending on the angle between light source
and camera. Maughan [2001] added a brightness variation that can
also be controlled depending on the number of visible pixels of an
area light [Sekulic 2004]. Oat [2004] concentrated on light streaks
that are added using a steerable filter. [Alspach 2009] described lens
flare as a set of vector shapes such as “halo”, “rays” or “rings” that
are generated according to user-specified statistics. In none of these
cases, an underlying camera or lens model was considered.

In other situations, more accurate simulations are needed, e.g., when
compositing virtual and realistic content, when designing lens sys-
tems, or when predicting the appearance of a scene through a lens
system. Previous high-quality approximations [Chaumond 2007;
Keshmirian 2008] relied on path tracing or photon mapping. While
such approaches deliver theoretically a high quality, several aspects;
such as spectral (e.g., chromatic aberration or lens coating), diffrac-
tion effects, or aperture shape, are usually ignored. Furthermore,
the visual quality for short computation times can be insufficient,
making interaction (e.g., zooming) impossible.

Simulation of wave-optical effects (in particular, diffraction and
interference) is usually considered out of reach for graphics appli-
cations. High-end optical design tools such as ZEMAX or Code
V allow for the computation of point spread functions and even
coarse predictions of stray light including diffraction effects [Tocci

2007; Perrin 2004]. Notwithstanding their physical accuracy, they
offer very general solutions and hence are not optimized for efficient
high-quality flare rendering. In a purely ray-based framework, [Oh
et al. 2010] showed how diffraction-like effects can be emulated for
simple regular structures for which the light field transforms can be
expressed analytically. In this work, we approximate similar effects
for general aperture shapes as a preprocessing step, using Fourier
transforms.

Our rendering scheme is physically motivated, yet runs at interactive
to real-time performance. Based on a ray-tracing approach, the tech-
nique does not only consider individual rays, but exploit the strong
correlation of rays within a light bundle. Radiant flux is treated
in a way similar to beam or pencil tracing (for a comprehensive
literature overview, see e.g. [Ernst et al. 2005]), but without the need
for adaptive refinement.

Further, our solution can be adapted to exaggerate or replace physical
components. Its initial faithfulness ensures that the resulting imagery
keeps a convincing and plausible appearance even after applying
significant artistic tweaks.

3 Model of the Optical System

Description of 
optical system Lens design AR coatingsApertureMaterials

Light transport 
model

Dielectric reflec-
tion/transmission Scaling params Bounce ordersDiffraction

Figure 2: Building bricks of our model. Each element allows to
trade physical realism against artistic expression, or detail against
performance.

In this section, we discuss various aspects of an optical system and
describe how we mathematically represent them. Depending on
the requirements of the application, some effects can be skipped to
simplify the model and increase the performance. The following
should be considered building bricks that can either be modeled
as accurately as desired, exaggerated, or altered in an artistically
desired way. Figure 2 illustrates the components of our system and
gives an overview over our model of the optical system, as well as
the light transport, and implementation (Section 4).

Geometry Light propagation is governed by light transmission
through, and reflection at a set of lens surfaces and characteristic
planes (entrance, aperturer, and sensor plane). In our examples, we
follow the definitions of photographic lenses from [Smith 2005], as
well as the patent describing a lens we have at hand [Ogawa 1996].
The geometric model is realized as a set of algebraically defined
surfaces, i.e., spheres and planes. Note that our technique does not
impose particular geometry or lens materials. Further, rules of good
optical design are not always needed to achieve attractive flare.

Figure 3: Single blade (left)
and a polygonal iris (right)

Iris Aperture The aperture
(also called diaphragm, iris, or
stop) consists of mechanical
blades that control the size of
a pupil by rotating into place.
When the aperture is fully open,
they are hidden in the lens bar-
rel, resulting in a circular cross-
section. “Stopping down” the

aperture leads to a polygonal contour defined by number, shape,
and position of the blades. We recreate this mechanism (Figure 3)
and store the resulting mask in a texture.



Optical Media and Dispersion In terms of optical media, we
constrain ourselves to perfect dielectrics with a real-valued refractive
index. All optical glasses are dispersive media, i.e., the refractive
index n is a function of the wavelength of light, λ. We follow
Sellmeier’s empirical approximation [Sellmeier 1871] to describe
the dispersion of optical glasses:

n2(λ) = 1 +
B1λ

2

λ2 − C1
+

B2λ
2

λ2 − C2
+

B3λ
2

λ2 − C3
, (1)

where B{1,2,3} and C{1,2,3} are material constants that can be ob-
tained from manufacturer databases, e.g. [Schott AG 2011], or other
sources [Polyanskiy 2010].

3.1 Reflection and Transmission: Fresnel Equations

Every time a ray of light hits an interface between two media, a
part of it is reflected, and the rest transmitted. It is the reflected part
that gives rise to ghosting artifacts, which we seek to simulate. For
smooth surfaces, the relative amounts follow Fresnel’s equations,
with the resulting ray directions according to the law of reflection
and Snell’s law, respectively [Hecht 2001].

The Fresnel equations provide different transmission and reflection
coefficients for different states of polarization. For unpolarized light
propagating from medium 1 to medium 2 (with refractive indices ni

and angles with respect to the normal θi), the overall reflectivity R
and transmissivity T of a surface can be expressed as

R =
1

2

„
n1 cos θ1 − n2 cos θ2
n1 cos θ1 + n2 cos θ2

«2

+
1

2

„
n1 cos θ2 − n2 cos θ1
n1 cos θ2 + n2 cos θ1

«2

and T = 1−R.

The treatment of polarization is crucial for the inner work-
ings of an anti-reflective coating (see below). Since Fresnel
reflection or transmission are partially polarizing, sequences of
light-surface interaction would ideally keep track of a light ray’s
polarization state. However, since the marginal benefit would not
justify the expenses, our current implementation of the ray tracer
does not propagate polarization throughout the optical system. At
each optical surface, the incident light is assumed to be s- and
p-polarized (see [Hecht 2001] for a definition) to equal parts.

 

 

0 5 10 15 20 25 30 35 40 45
400

450

500

550

600

650

700

1.8

2

2.2

2.4

2.6

2.8

3

3.2

deg

nm

Figure 4: Lens coatings make reflections from optical interfaces
inside the lens barrel appear colored. Left: Canon EF 70-200mm
f/2.8L. Middle: Canon EF 100mm f/2.8 USM macro. Right: Net
reflectivity in % of a quarter-wave coating designed for 532 nm light
at normal incidence (nglass = 1.5, ncoating = 1.38, d = 96.4 nm).

Anti-Reflection Coatings In an attempt to minimize reflections,
optical surfaces often feature antireflective coatings. They consist
of layers of clear materials with different refractive index. Light
waves that are reflected at different interfaces are superimposed
and interfere with each other. In particular, if two reflections have
opposite phase and identical amplitude, they cancel each other out,
reducing the net reflectivity of the surface. The parameters of the

multi-layer coatings used for high-end lenses are well-kept secrets
of the manufacturers.

Even the best available coatings are not perfect. Their residual
reflectivity is a function of wavelength and angle, R(λ, θ). A look
into a real lens reveals that different interfaces reflect white light
in different colors, suggesting that they are all coated differently
(Figure 4).

Without the resources to reverse-engineer exact characteristics, we
chose a so-called “quarter-wave” coating. It consists of a single
thin layer. With such coating, the reflectivity of the surface can be
minimized for a center wavelength λ0 for a given angle of incidence,
θ0. This requires a solid material of very low refractive index;
in practice, the best choice is often MgF2 (n = 1.38). The layer
thickness is chosen to result in a phase shift of π/2 (hence the name).

While an analytical expression for R(λ, θ) can be derived in most
cases, even the simple quarter-wave coating involves multiple in-
stances of the Fresnel equations, making the expression relatively
complex. An example plot for a quarter-wave coating is shown in
Figure 4. One way to approximate such a function is to store it
in a precomputed 2D texture, which enables us to also record or
use arbitrary available coating functions. Nonetheless, in practice,
the GPU’s arithmetic power is usually high enough to evaluate the
function directly. The computation scheme for R(λ, θ) as used in
our shader is provided as supplemental material.

3.2 Absorptance

All optical glasses partially absorb light that passes through them.
However, this is a weak effect (with typical light loss of a few
percent across the entire lens system) and of low frequency (global
attenuation). We therefore chose not to include it in our model.

3.3 Diffraction

When light passes through small-scale geometry such as the iris
aperture in our system, or small imperfections (fingerprints, dust,
scratches), it is diffracted into geometrically shadowed regions. The
physical explanation can be found in Huygens’ principle which states
that every point on a wavefront can be thought of as the emitter of a
spherical wave. The resulting pattern is defined by the superposition
of these elementary waves [Hecht 2001; Goodman 2005].

In our system, we encounter two typical occurrences of diffraction:
the starburst shape centered around the image of the light source
and the subtle ringing patterns around the border of each reflection
ghost. In a wave-optical framework, both can be computed exactly
by evaluating the so-called diffraction integral for all points on the
sensor. This is very costly and by no means possible in real time.
Instead, we are interested in a computationally cheap approximation.
As it turns out, we can convincingly reproduce the above effects by
precomputing a small set of textures using the popular Fraunhofer
and Fresnel approximations to the diffraction integral, respectively.

Starburst pattern – Fraunhofer approximation Light passing
through a transmissive aperture and propagating further through free
space is diffracted into a characteristic far-field pattern. Assuming a
uniform incident distribution of parallel (collimated) light (at wave-
length λ) and a real-valued amplitude transmission function T (x, y),
the Fraunhofer pattern T ′(x′, y′) in an observation plane at distance
z0 from the aperture is given by the Fourier power spectrum (i.e.,
the squared-magnitude Fourier spectrum) of T [Hecht 2001]. The
relation between image coordinates (x′, y′) and Fourier frequencies
(u, v) is given by:



Figure 5: Left: Photo of a bright light source. Right: Chromatic
Fourier transform of an aperture transmission function.

(x′, y′) = (u, v) · λ · z0 (2)

For a given aperture geometry, it is therefore sufficient to compute
a single Fourier spectrum and scale it linearly depending on the
wavelength. We start with the polygonal transmission function in
unit size and optionally add some noise (Figure 14, right). Similar
to [Ritschel2009], we then compute a 3-channel starburst texture
VRGB(s, t) by superimposing multiple scaled copies of the power
spectrum of the aperture. We found wavelength steps of 5 nm to be
sufficiently fine to blur out the radial ringing present in the individual
spectral terms. The final texture (see Figure 5 for an example) is
normalized to unit radiant flux per color channel. During runtime,
we center it at the projected sensor location of the light source, and
scale it in size (w, h) and intensity I as follows:

w = h = w0 ·# // scale with reciprocal aperture size (3)

I = I0 · IRGB ·#−4
// #−2 of light transmitted thru iris

// spread over #2 the starburst area

(4)

where # is the f-number (as in “f/#”), and IRGB the radiant flux
entering the lens expressed as an RGB vector. We are not aware of a
simple way of obtaining the accurate scaling constants w0 (“size”)
and I0 (“intensity”) that are specific to the optical system. Instead,
since both parameters are rather intuitive, we leave this choice to
the user, allowing them to either recreate the appearance of a given
optical system, or to amplify and resize the starburst as they desire.

Ringing pattern – Fresnel approximation Optical systems are
usually laid out such that the aperture plane is Fourier transformed
into the sensor plane by the back section of the lens system. In
the presence of interreflections, arbitrary transforms are possible,
ranging from an image of the aperture itself to its Fourier transform,
but in particular intermediate patterns that share features with both
the spatial and Fourier domains.

Mathematically, the continuum between the spatial and Fourier do-
mains can be expressed in terms of fractional powers of the Fourier
operator. Research in wave optics shows a close relation between
this Fractional Fourier Transform (FrFT) and the so-called Fresnel
approximation for near-field diffraction [Ozaktas et al. 2001]. With-
out the need for a deeper understanding of Fourier optics, we can
use the FrFT code from [Ozaktas et al. 2001] to embellish given
aperture functions with plausible ringing patterns (Figure 6). It does
not take much effort to find a good value for the only parameter, the
fractional order α, to reproduce a given flare pattern. Heuristically,
we found the following to work well (longer wavelength and smaller
aperture leads to stronger ringing):

α = 0.15 · (λ/400 nm) · (#/18) (5)

As we will see in the next section, these precomputed textures can
be used during our rasterization step, where they replace the sharp
aperture image that would result from standard ray tracing.

Photo Rendering

0 0.2 0.4

0.6 0.8 1.0

Figure 6: Left: Close-up on a lens flare photo. Note the ringing
around the contour of each ghost. Middle: Chromatic FrFT of
an octagonal aperture. Right: Gradual transition from spatial to
Fourier domain (0≤α≤1 in steps of 0.2).

4 Rendering System

The previous section analyzed how to model important aspects of
lens-flare effects. Here, we present our rendering technique to simu-
late the actual light propagation. It is based on ray tracing through
the optical system to the film plane (sensor). In contrast to expensive
off-line approaches [Keshmirian 2008; Steinert et al. 2011], we only
trace a sparse set of rays. Each ray records values about the lens-
system traversal. Rays reaching the sensor implicitly define a ray
grid across which we then interpolate the recorded values in image
space. Hereby, we can approximate the outcome of rays that were
never actually shot, leading to an approximate beam tracing. The
overview of our rendering pipeline is illustrated in Figure 7. In the
following, we will elaborate on the stages of our pipeline.

Spectral FFT
(“Fraunhofer”)

• Intensity I0
• Scale w0

Spectral FrFT
(“Fresnel”)

• Frac. order α

• Num. blades
• Blade shape
• Noise

Bundle planning • Lens prescription

Ray tracing • Lens prescription
• AR coatings
• Spectral bands
• Grid resolution

Rasterizer • MSAA?
• Spectral filter?

Geom. touch-up
Compute irradiance

• Cull invalid tris?
• Use symmetry?

Starburst texture

Polygon texture
Bundle bounds
Detail level

Ray grid
Rel. intensities
Clipping coords

Primitives Ghost texture

Precomputation
For each 
ghost

Aperture generator

• Mixing weights
• Tone mappingFramebuffer

Figure 7: Our lens flare rendering pipeline.

Assumption We will assume a directional, or distant, light source
which holds for most sources of flare (e.g., sunlight, street lights,
and car headlamps). This assumption is not a necessary requirement
of our algorithm, but helpful for its acceleration.

4.1 Rendering Scheme

Ghost Enumeration Rays traversing the lens system are reflected
or refracted at lenses. Each flare element caused by interreflection,
henceforth called “ghost”, corresponds to a specific sequence of
these transmissions and reflections. Only sequences involving an
even number of reflections impinge on the sensor. Those with
more than two reflections can usually be ignored; only a small
percentage of light is reflected and they are typically by orders of
magnitude weakened leading to insignificant contributions in the
final image (Figure 8). We enumerate all two-reflection sequences:
light enters the lens barrel, propagates towards the sensor, is reflected



Figure 8: Ghosts caused by 2-fold (left) and 4-fold (right) inter-
reflection. The small percentage reflected at each surface signifi-
cantly weakens higher-order flare, despite the higher number of such
ghosts. To improve performance, we do not render them by default.

Figure 9: One out of 91 possible double-reflection sequences for
this lens design

at an optical surface, travels back, is again reflected, and, finally,
reaches the sensor (Figure 9). For n Fresnel interfaces in an optical
system, there are N=n(n− 1)/2 such sequences that are treated
independently to render one ghost at a time.

Bundle Tracing For a given ghost index and incident light direc-
tion, a parallel bundle of rays is spanned by the entrance aperture of
the lens barrel. Next, we select a sparse uniform set of rays to track
through the lens system. Because we know the exact intersection
sequence for each ghost, unlike classical ray tracing, we do not need
to follow each ray with a recursive scheme, elaborate intersection
tests, or spatial acceleration structures. We parse the sequence into
a deterministic order of intersection tests against the algebraically-
defined lens surfaces. This makes our technique particularly well
suited for GPU execution.

At each intersection, we compare the hitpoint of the ray with the di-
ameter of the respective surface and record its maximum normalized
distance from the optical axis along the way through the system:

r(new)
rel = max(r(old)

rel , r/rsurface),

where r is the distance of the hitpoint to the optical axis, and rsurface
the radius of the optical element. Also, as a ray passes through
the aperture plane, a pair of intersection coordinates (ua, va) is
stored. Note that we do not discard rays that escape from the system
(rrel > 1), since even these are valuable for interpolation in the ray
grid (see below). Furthermore, we extrapolate the functionality of
each optical surface virtually by relying on its defining algebraic
function beyond the nominal lens diameter. To make this extension
work, we replace the common nearest-surface check with a strict in-
order intersection, all the while allowing the resulting ray parameter
to be negative (Figure 10). This increases the numerical stability
of the simulation for small ray densities, since more rays can pass
through the system in a mathematically continuous way. Note that
these non-physical rays will not end up in the final rendering but
only serve as data points for interpolation. For interpolated rays that
are actually drawn, the next surface is also the nearest.

Only when a ray can no longer be intersected with the next surface
at all, or undergoes total internal reflection, it is pruned. This can
create holes in the ray grid, but we did not see the need for any
refinement strategies. It simply proved unproblematic because the

Nearest-intersection Fixed-intersection-order

Outer rays diverge Outer rays converge
(mathematically continuous)

Figure 10: Pushing the limits of a biconvex lens (illustration). Left:
traditional intersection with the nearest surface along the way. Right:
our intersection in fixed sequence. Note how the outermost rays still
converge to the focus.

ray’s transported energy approaches zero in the vicinity of total inner
reflection, making its neighbors and the area on the ray grid appear
black in the final rendering anyway.

Rasterization and Shading Once the rays have been traced
through the system, they form a ray grid on the sensor plane (Fig-
ure 11). The set of rays is sparse and, each ray taken by itself, would
deliver insufficient quality. Our goal is to interpolate information
from neighboring rays to estimate the behavior of an entire ray beam.
To this end, we do not use a random sparse set of rays, but initialize
the ray set as a uniform grid placed at the first lens element. Each
grid cell on the entrance plane can be matched to a grid cell on the
sensor between the same rays. Similarly to traditional beam tracing,
the total radiant power transported through each beam is now dis-
tributed evenly over the area of the corresponding quad, leading to
intensity variations in the lens flare. Additional shading terms (in
particular, Lambertian cosine terms) are taken into account.

Note that so far, we did not cull rays that were blocked by the
lens system or aperture, but we recorded the position where they
traversed the aperture (ua,va), and its maximum distance to the
optical axis, rrel, with respect to the radius of the respective surface.
When treating a beam, we can now interpolate these coordinates
over the corresponding quad. Hereby, more accurate inside/outside
checks for the interpolated rays become possible; we apply clipping
on a fragment basis when the interpolated radius exceeds the limit
distance. Finally, the position on the aperture is used to decide the
ghost shape by a lookup in an aperture texture. This is also when the
“Fresnel-like” diffraction comes in (Section 3.3), since the ringing
pattern has been precomputed and stored in the aperture texture.

4.2 Accelerations

The previously described algorithm delivers convincing results for
simple lens systems. Here, we present several strategies to improve
upon the basic solution in terms of quality and speed.

Ray Bounding Of all the rays entering the lens from a given
direction, only a small subset can actually reach the sensor. Many
rays are blocked by obstacles, in particular, the iris aperture when
it is set to a small diameter. To save computational resources, we
therefore restrict the sparse set of rays to a rectangular region on
the entrance aperture that is chosen to enclose all rays that might
potentially make it all the way to the sensor.

The location and dimensions of this bounding region depend on the
light direction, aperture size, and possibly other parameters (zoom,
or focus) in a nontrivial way, making a run-time parameter search
difficult. Instead, we propose a preprocessing step to estimate the
optimal bounding region for each ghost. For a given configuration,
we employ the previous basic algorithm with a low resolution grid to
recover all rays that actually reach the sensor. Based on this grid, we
determine a bounding rectangle on the entrance aperture. It proved



Figure 11: From left to right: A ray bundle mapped to a grid on
the sensor plane (color-coded aperture texture coordinates (ua, va),
clipping radius rrel, shading with aperture texture and clipping).

Figure 12: A highly complex ghost. From left to right: Deformed
ray grid on sensor, aperture texture coordinate, rendered caustic.

sufficient to make the bounds wide enough to contain all valid rays
for the current and all neighboring parameter settings. A subdivision
scheme can help in speeding up the bounding procedure.

Adaptive Resolution Lens flare is a set of caustics of a complex
optical system, which also implies that very high frequencies can
occur. While ray bounding significantly improves performance and
quality, subtle changes might still be missed. In our algorithm, a reg-
ular grid of incident rays is mapped to a more or less homogeneous
grid on the sensor. In most cases, the grid undergoes simple scaling
and translation which is captured with sufficient precision even for
a coarse tessellation (Figure 11). In some configurations, though,
the accumulation of nonlinear effects can cause severe deformations,
fold the grid onto itself, or even change its topology (Figure 12).
Such ghosts require a higher grid resolution.

We employ a heuristic approach to adapt the grid resolution for each
ghost. As an indicator, we use the area of grid cells. A large variance
across the grid implies that a non-uniform deformation occurred
and higher precision is needed. We therefore evaluate this variance
during precomputation, and assign one out of six detail levels to
each ghost, with resolutions from 16 × 16 to 512 × 512 rays per
bundle. Thus, through early identification of challenging ghosts the
use of more sophisticated subdivision techniques can be avoided.

Intensity LOD Another piece of information obtained during the
precomputation step is an approximate intensity of the resulting
ghost. Given this information, during runtime, the user can control
the budget by fixing the number of brightest ghosts to be evaluated.

Aperture Culling For small iris openings, rays rarely traverse the
aperture multiple times without being blocked. As a result, the cor-
responding two-reflection sequences (with three aperture traversals)
can usually be ignored without introducing strong artifacts. Hereby,
the number of enumerated sequences is reduced significantly to
N = (f(f − 1) + b(b − 1))/2, where f and b are the number of
lens surfaces in front of or behind the aperture, respectively.

Symmetries Symmetries in the optical system can help reduce
computational complexity. By design, most photographic lenses are
axisymmetric, whereas anamorphic lenses (featuring two orthogonal
planes of symmetry that intersect along the optical axis) are common
in the film industry. The latter are currently not supported in our

Figure 13: Mirror symmetry - only the iris shape causes asymmetry

system, but they could be added by replacing the spherical lens
surfaces with more general, ellipsoidal, shapes.

For axial symmetry, we can reduce the amount of required precom-
putation drastically; all computation up to and including the ray
tracing is done for a fixed azimuthal angle of incidence, and then
rotated into place. Furthermore, we can reduce the sparse ray set by
exploiting the mirror symmetry of the flare arrangement, only con-
sidering half the rays on the entrance plane. The grid on the sensor
can then be mirrored along the symmetry axis. Please notice that
our choice to not block rays directly, but record aperture coordinates
and intersection distances, enables us to consider the whole system
as symmetric—even the aperture, which in general is not, just as the
resulting ghosts are not symmetric.

Spectral Rendering Treating antireflective coating and chromatic
lens aberrations requires a wavelength-dependent evaluation. For a
brute-force evaluation, most ghosts are well represented with only
three wavelengths (RGB), but a few (typically, 3 out of 140 ghosts),
can require up to 60 wavelengths for smooth results. While a level-of-
detail (LOD) approach could be imagined, we render at 3 (standard
quality / RGB) or a maximum of 7 (high quality) wavelengths, which
comes at a moderate computational cost, but employ an interpolation
strategy. We filter the result of each wavelength band in image
space to create transitions. The orientation and dimension of the
required 1D blur kernel have been derived during the precomputation
phase, from the spatial variation between neighboring wavelength
bands. The filter size is chosen to bridge the gap between the bands.
The filtered representations are then blended together in the RGBA
framebuffer and deliver a smooth result.

4.3 GPU Implementation

Basic Algorithm We perform the ray tracing in the vertex shader.
To deal with total reflection, culled rays are flagged via a texture
coordinate. The geometry shader then produces the triangle strips
that form beam quads in the grid. Here, the area of each grid
cell is also computed, and used to compute the irradiance. For
symmetric systems where only half of the ray set is traced, the
geometry shader mirrors each triangle along the symmetry axis of
the flare arrangement. This doubling of triangles is more efficient
than image-based mirroring. The resulting quads on the sensor are
rasterized in the fragment shader that can discard fragments if they
correspond to blocked rays (rrel > 1, see Section 4.1). Per-vertex
irradiance values are interpolated over the quad, and a texture lookup
based on the aperture coordinate completes the rendering. Finally,
all ghosts are composited additively.

Figure 14: SIGGRAPH logo aperture shape (left) and a procedural
“dirt” pattern consisting of dots and lines (right), each along with its
chromatic Fourier transform.



Canon EF 70–200mm f/2.8L Nikon 80–200mm f/2.8 Itoh 100–145mm f/3.5 Angenieux Biotar 100mm f/1.1 Kreitzer Tele 390mm f/5.6 Brendel Tessar 100mm f/2.8

0.5/7.5 fps

0.7/9.5 fps

1.2/23 fps

3.2/30 fps

3.1/39 fps

8.6/47 fps

1.8/58 fps

6.4/84 fps

7.7/110 fps

29/110 fps

18/228 fps

21/189 fps

Figure 15: Lens flare of various lens systems. Fps are given for high quality (more rays do not bring improvement) and standard settings. Top
row: lens layout. Middle row: aperture fully open. Bottom row: aperture reduced by 4 f-stops.

Smooth shading An improvement in quality can be achieved by
not shading quads, but vertices and interpolating (Gouraud shading).
At each vertex, we store the average value of its surrounding neigh-
bors. The regular grid of rays, combined with the transform feedback
(or the stream-out) mechanism of modern graphics hardware, makes
this lookup of neighboring quad values very easy.

5 Artistic Control

Like other lens effects [Lee et al. 2010], flare can serve as a creative
tool to increase the appeal of synthetic images and photographs alike.
Our algorithm offers many possibilities to interact with the basic
pipeline in order to exceed physical limitations while maintaining a
plausible look. Due to our approach of enumerating all interreflec-
tions, only certain, maybe the most beautiful, ghosts can be selected
for rendering. Furthermore, imperfections can be well represented
with very approximate means.

Creative Use of Optical Elements While the most common
lenses feature apertures shaped like regular polygons, any 2D shape
can be used instead. As an example, we used the SIGGRAPH logo
which results in an unusual starburst pattern (Figures 14) as well as
transformed ghosts of the logo all over the image (Figures 16).

Adding Realism through Imperfections Lenses in the real
world are often degraded by dust and imperfections on the sur-
face that can affect the diffraction pattern. We give control over this
effect by adding a texture of dust and scratches to the aperture before
determining the Fourier spectrum. Drawing a dirt texture is possible,
but we also offer procedural generation of scratches and dust based
on user defined statistics (density, orientation, length, size). While
scratches add new streaks to the lens flare, dust has a tendency to add

Video with added flare

Stylized lens flare

Original video

Figure 16: HDR video frames with added post-process lens flare.
Left: “SIGGRAPH” lens equipped with a custom aperture shape.
Right: A HDR frame from the short “Fiat Lux” by Paul Debevec,
seen through the Nikon lens.

rainbow-colored speckles. In addition, the texture could be animated
to achieve dynamic effects as in [Ritschel et al. 2009].

Imperfect Symmetries Since real lens systems are never exactly
symmetric, lens flare does not line up perfectly on the mirror axis.
To model this imperfection, we add a variance that translates each
ghost slightly in the image plane. This modification offers more
intuitive control than a corresponding change in the lens system.

Anti-Reflective Coating The color of each individual ghost is
mainly determined by the anti-reflective coatings of the lens surfaces
causing it. This effect can easily be abstracted by letting the user
provide color ramps or global color changes for each ghost.

6 Results

We implemented our solution on an Intel Core 2 Quad 2.83 GHz
with an NVIDIA GTX 285 card. Our method reaches interactive to
real-time framerates depending on the complexity of the optical sys-
tem and the accuracy of the simulation. As illustrated in Figure 15,
our method can be of interest for demanding real-time applications,
but also for higher-quality simulations. Figure 19 shows that even
at significantly reduced resolution, the ghosting computed using
our technique is close to the ray-traced reference. For performance,
one could even pick only those ghosts that are particularly beau-
tiful, yielding a significant speedup while maintaining the artistic
expression. In practice, culling the 20% weakest ghosts delivers 20%
speedup without introducing visible artifacts. Even 40% still proved
acceptable for interactive applications (speedup approx. 50%). In
Figure 15, we provide performance ratings for different quality set-
tings. A side-by-side comparison of the settings used can be found
in Figure 17. The most costly effect of our solution are caustics
in highly anisotropic ghosts (e.g., Figure 18) because here the ray
bundles are most sensitive to spectral and spatial variation.

Our solution does need to perform a reasonably quick precomputa-
tion step to bound the sparse set of rays. For a simple lens such as a
Brendel prime lens (9 ghosts), this precomputation takes less than
0.1 sec; for the Nikon zoom lens (142 ghosts), it takes 5 min.; for
the Canon zoom lens (312 ghosts), it takes 20 min to iterate through
all ghosts × 90 light directions × 642 rays × 20 zoom factors ×
8 aperture stops. The latter two allow us to freely change camera
settings on the fly.

Our algorithm produces physically-plausible lens flare renderings
(Figure 1). Most important effects are simulated convincingly, lead-
ing to images that are hard to distinguish from real-world footage.



Figure 17: Quality settings. Left: high quality (7 spectral bands,
spectral filtering, supersampling). Right: normal quality (RGB,
no filtering, no supersampling, remove 40% darkest ghosts). The
corresponding frame rates are 6.1 fps and 20.6 fps, respectively, on
an NVIDIA GTX 285.

Figure 18: Five different views on “Ghost #103” in the Nikon lens
system. Note the intricate folding and chromatic variation.

The main difference arises from imperfections of the lens system
and our approximate handling of diffraction effects. Furthermore,
the lens coating is unknown, forcing us to an estimate.

Our algorithm naturally handles complex deformations and caustics
(Figure 18). Previous real-time methods were unable to obtain sim-
ilar results because this effect can only be reproduced when light
paths through the system are simulated. Our model considers many
aspects that were neglected by previous approaches (e.g., the reflec-
tivity of lens coatings as a function of wavelength and angle). Even
with these improvements and at highest spatial and spectral resolu-
tions, rendering flares for even the most complex optical designs
takes no more than a few seconds. This is significantly faster than
a typical path-traced solution that would take hours, if not days, to
converge on today’s desktop computers [Steinert et al. 2011].

The memory consumption of our algorithm is mainly defined by the
textures containing the aperture and its Fourier transform (24 MB
worth of 16-bit float data), as well as three render buffers (another
24 MB).

7 Discussion and Limitations

7.1 Applications

Our algorithm has low memory overhead and is computationally
efficient. It could be of use for various application scenarios:

Figure 19: Left: densely ray-traced rendering (resolution per ghost
81922 samples; rendering time 159 s on an NVIDIA GTX 580).
Middle: rendering using sparse ray bundles at a maximum resolution
of 1282, and our interpolation technique (29.8 ms per frame on
the same hardware). Right: A closer look on one of the ghosts:
underlying grid structure and aperture coordinates.

CG Movie Production The quality delivered by our rendering
scheme exceeds many previous offline techniques, making it inter-
esting as a preview, but even as a final rendering solution. Artistic
control further allows a user to maintain a realistic appearance while
being able to fine-tune and customize the effect.

Computer Games Deactivating costly calculations increases the
overall performance, making our solution useful for games. Fur-
thermore, our two-reflection assumption allows the user to choose
particular ghosts that they consider important. For well-behaved
flares, even a very small amount of rays (e.g., 4× 4) delivers high
quality thanks to the interpolation step.

Image and Video Processing Current lens flare filters do not
appear convincing because they keep a static look, e.g., ghost defor-
mations are ignored. Our method is temporally coherent, making it
a good choice for movie footage as well. We detect and follow light
sources in the image (using an intensity threshold). One could also
animate the light manually to emphasize scene elements or guide
the observer. Our instant feedback is of great help in this context.

Lens-System Design Even in live-action cinematography, lens
flare is sometimes considered a desired effect [Woerner 2009]. Cer-
tain lens systems (such as the Lensbaby) are designed for creative
use of aberrations and other optical effects. In combination with a
traditional lens design tool, our algorithm could help lens designers
to preview and optimize the flare characteristic of an optical design.

Deflaring Another interesting possibility would be to predict and
remove flare patterns from actual photographs. However, this would
require a perfect description of the optical system with its countless
parameters und unknowns, which is currently out of reach.

7.2 Limitations

Light Sources Our current rendering mechanism is optimized to
having a single visible point/directional light source. Area lights can
be approximated by a point light and an energy emission proportional
to their visibility, but such solutions remain approximate. A more
accurate possibility is to sample the source at an additional cost.



Precomputing Resolution While the ray bounding precompu-
tation traces rays through the system for various light positions,
one should not conclude that these low-resolution images could be
used for rendering. We initially experimented with image-warping
strategies, but it proved futile because the subtle changes (such as
displacement and deformation) cannot be well addressed. Also, such
a solution is memory intensive, while ours only stores a small lookup
table of bounding rectangles.

Aliasing A common problem when triangles become smaller than
one pixel is rasterization aliasing. The situation can lead to very high
intensity, but potentially error-prone rasterization. In practice, this
only happens for very anisotropic ghosts (min/max ratio > 1000)
and their number is very small (for the Nikon lens, 3 out of 142).
If desired, we can select these flares and treat them with a higher
resolution framebuffer which is, in the end, added to the standard
framebuffer. Alternatively, one can replace the rasterization of these
small triangles with a point rendering technique.

8 Conclusion

We presented an interactive rendering algorithm to simulate lens
flare of complex lens systems. We showed superior results with
respect to previous interactive solutions and even offline suggestions
to a large extent. We also introduced various means to artistically
modify and enhance the rendition beyond physical limitations for
stylization purposes. Our algorithm is flexible in the sense that we
allow a fine tradeoff between accuracy and performance by allowing
the user to choose the simulated effects that are most important for
the application context. Hereby, our method addresses high-quality,
as well as medium-quality real-time purposes.

In the future, we imagine that our fast algorithm could serve as a
tool to recover parameters of unknown optical systems. Given the
fact that flare patterns are very sensitive to slight parameter changes,
an analysis-by-synthesis scheme could enable nondestructive lens
characterization. Such a calibrated flare synthesis might then enable
us to “deflare” HDR images taken by the system. Capturing artifact-
free HDR data is an unsolved problem.

We thank the anonymous reviewers for their valuable comments
and suggestions. This work was partly funded by the Intel Visual
Computing Institute at Saarland University. Sungkil Lee grate-
fully acknowledges support by the Basic Science Research Program
through the National Research Foundation of Korea, funded by the
Ministry of Education, Science and Technology (2011-0014015).

References

ALSPACH, T., 2009. Vector-based representation of a lens flare. US
Patent 7,526,417.

CHAUMOND, J., 2007. Realistic camera - lens flares.
http://graphics.stanford.edu/wikis/
cs348b-07/JulienChaumond/FinalProject.

ERNST, M., AKENINE-MÖLLER, T., AND JENSEN, H. W. 2005. In-
teractive rendering of caustics using interpolated warped volumes.
In Proc. Graphics Interface’05, 87–96.

GOODMAN, J. W. 2005. Introduction to Fourier Optics, 3 ed.
Roberts & Company Publishers, December.

HECHT, E. 2001. Optics, 4 ed. Addison Wesley, August.

KESHMIRIAN, A. 2008. A physically-based approach for lens flare
simulation. Master’s thesis, University of California, San Diego.

KILGARD, J., 2000. Fast OpenGL-rendering of lens flares.
http://www.opengl.org/resources/features/
KilgardTechniques/LensFlare/.

KING, Y. 2001. Game Programming Gems 2. Charles River Media,
ch. 2D Lens Flare.

KINGSLAKE, R. 1992. Optics in Photography. SPIE Publications.

KOLB, C., MITCHELL, D., AND HANRAHAN, P. 1995. A realistic
camera model for computer graphics. In Proc. ACM SIGGRAPH,
317–324.

LEE, S., EISEMANN, E., AND SEIDEL, H.-P. 2010. Real-Time
Lens Blur Effects and Focus Control. ACM Transactions on
Graphics (Proc. ACM SIGGRAPH’10) 29, 4, 65:1–7.

MAUGHAN, C. 2001. Game Programming Gems 2. Charles River
Media, ch. Texture Masking for Faster Lens Flare.

OAT, C. 2004. Shader X3. Charles River Media, ch. A Steerable
Streak Filter.

OGAWA, H., 1996. Zoom lens. US Patent 5,537,259.

OH, S. B., KASHYAP, S., GARG, R., CHANDRAN, S., AND
RASKAR, R. 2010. Rendering Wave Effects with Augmented
Light Field. In Computer Graphics Forum (Proc. Eurographics).

OZAKTAS, H. M., ZALEVSKY, Z., AND KUTAY, M. A. 2001.
The fractional Fourier transform with applications in optics and
signal processing. Wiley.

PERRIN, J.-C. 2004. Methods for rapid evaluation of the stray
light in optical systems. SPIE, L. Mazuray, P. J. Rogers, and
R. Wartmann, Eds., vol. 5249, 392–399.

PIXAR, 2008. The imperfect lens: Creating the look of Wall-E.
Wall-E Three-DVD Box.

POLYANSKIY, M., 2010. Refractive index database. http://
refractiveindex.info.

RITSCHEL, T., IHRKE, M., FRISVAD, J. R., COPPENS, J.,
MYSZKOWSKI, K., AND SEIDEL, H.-P. 2009. Temporal Glare:
Real-Time Dynamic Simulation of the Scattering in the Human
Eye. In Computer Graphics Forum (Proc. Eurographics).

SCHOTT AG, 2011. Optical glass catalogue, January 2011.

SEKULIC, D. 2004. GPU Gems. Addison-Wesley, ch. Efficient
Occlusion Queries.

SELLMEIER, W. 1871. Zur Erklärung der abnormen Farbenfolge im
Spectrum einiger Substanzen. Annalen der Physik und Chemie
219, 272–282.

SMITH, W. J. 2005. Modern Lens Design. McGraw-Hill.

STEINERT, B., DAMMERTZ, H., HANIKA, J., AND LENSCH, H.
P. A. 2011. General spectral camera lens simulation. In Computer
Graphics Forum, vol. 30, to appear.

TOCCI, M., 2007. Quantifying Veiling Glare (ZEMAX
Users’ Knowledge Base). http://www.zemax.com/kb/
articles/192/1.

WENZEL, C., 2005. Far Cry and DirectX. http:
//developer.amd.com/media/gpu_assets/
D3DTutorial08_FarCryAndDX9.pdf.

WOERNER, M., 2009. J.J. Abrams Admits Star Trek Lens Flares Are
“Ridiculous” (interview). http://io9.com/#!5230278.

http://graphics.stanford.edu/wikis/cs348b-07/JulienChaumond/FinalProject
http://graphics.stanford.edu/wikis/cs348b-07/JulienChaumond/FinalProject
http://www.opengl.org/resources/features/KilgardTechniques/LensFlare/
http://www.opengl.org/resources/features/KilgardTechniques/LensFlare/
http://refractiveindex.info
http://refractiveindex.info
http://www.zemax.com/kb/articles/192/1
http://www.zemax.com/kb/articles/192/1
http://developer.amd.com/media/gpu_assets/D3DTutorial08_FarCryAndDX9.pdf
http://developer.amd.com/media/gpu_assets/D3DTutorial08_FarCryAndDX9.pdf
http://developer.amd.com/media/gpu_assets/D3DTutorial08_FarCryAndDX9.pdf
http://io9.com/#!5230278

