
Eurographics Symposium on Rendering 2013
Nicolas Holzschuch and Szymon Rusinkiewicz
(Guest Editors)

Volume 32 (2013), Number 4

Practical Real-Time Lens-Flare Rendering

Sungkil Lee Elmar Eisemann

Sungkyunkwan University, South Korea Delft University of Technology, Netherlands

(a) Ours: 297 fps (b) Reference: 4.1 fps

Figure 1: Our lens-flare rendering algorithm compared to a reference state-of-the-art solution [HESL11]. Our method signifi-
cantly outperforms previous approaches, while quality remains comparable and is often acceptable for real-time purposes.

Abstract
We present a practical real-time approach for rendering lens-flare effects. While previous work employed costly ray
tracing or complex polynomial expressions, we present a coarser, but also significantly faster solution. Our method
is based on a first-order approximation of the ray transfer in an optical system, which allows us to derive a matrix
that maps lens flare-producing light rays directly to the sensor. The resulting approach is easy to implement and
produces physically-plausible images at high framerates on standard off-the-shelf graphics hardware.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—
Display algorithms

1. Introduction

Lens flare is the result of unwanted light reflections in an opti-
cal system. While lenses are supposed to refract an incoming
light ray, reflections can occur, which lead to deviations from
the intended light trajectory. A single reflection would send a
ray back towards the entrance plane, but an even number of
reflections can redirect rays towards the sensor. If such rays
carry sufficient energy to the sensor, they might produce a
so-called ghost. As these reflected rays still cross the aperture,
ghosts often share its shape. While originally an artifact, lens
flare is often used for artistic purposes and is a good indicator
for bright light sources [Pix08].

A typical method to compute lens flare is to rely on ray tracing
to simulate light paths, assuming typically up to two or four
reflections. This approach achieves the highest quality, but
can become costly for complex optical systems. Recently, a
more approximate but faster solution was proposed based on
polynomials [HHH12]. While this model can handle complex
optical behavior, the algorithm is still too slow for real-time
applications (e.g., up to 4 secs. for complex lens models).

Real-time approaches in games and virtual reality are usually
based on texture sprites; artists need to place and design
ghosts by hand and have to rely on (and develop) heuristics
to achieve a convincing behavior. Although efficient at run
time, the creation process is time-consuming, cumbersome,
and difficult. Further, the solution misses a physical basis
and often appears unrealistic. Our work follows sprite-based
methods and shares their efficiency, but we derive a more
accurate physically-based solution for a given optical system.

We present a linear approximation of lens-flare effects based
on a paraxial assumption [Smi07]. In comparison to the pre-
vious near-accurate solutions, our first-order approximation
does not exhibit nonlinear deformation behavior. However,
it is much more efficient, making it a perfect candidate for
real-time applications. Further, our model still captures many
physical characteristics of the optical system including ghost
location, size, and color. Our contributions include:
• a matrix-system formulation for lens-flare effects
• an efficient rendering scheme
• an analysis to optimize rendering performance.

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

S. Lee & E. Eisemann / Practical Real-Time Lens-Flare Rendering

2. Previous Work

This section describes previous work on lens-flare rendering.
Refer to Hullin et al. [HESL11] for a more detailed review.

For realistic image synthesis, camera properties are often
mentioned as important factors [KMH95, LES10, SDHL11].
Physically-based real-time solutions exist for some effects,
such as depth of field [LES10], but are missing for lens flare.

An early interactive approach relied on texture sprites that
were animated using a hand-tweaked displacement function
along a line through the screen’s center [Kil00]. Real-time
follow-up work mostly concentrated on introducing addi-
tional heuristically-steered features, such as size and opac-
ity [Kin01], brightness variations [Mau01, Sek04], or light
streaks [Oat04]. This trend is also reflected by the lens-flare
plugins [Als09], which allow a user to tweak certain pa-
rameters, but they are not related to any underlying camera
model. Our approach fills this gap and delivers a fast render-
ing scheme derived from actual optical systems.

Except for very recent work [HESL11,HHH12], lens systems
were only considered in costly offline approaches using path
tracing [Cha07], photon mapping [Kes08], or in lens-design
solutions that do not aim at image generation [Toc07]. Com-
puting lens flare via bundle tracing [HESL11] leads to high
quality results, but the method quickly becomes costly for
complex lens systems and involves a significant preprocessing
time. The more efficient (but also coarser) solution based on
a polynomial representation [HHH12] leads to higher fram-
erates. Nonetheless, the necessary dense random sampling
of the entrance pupil (the first lens surface that is exposed to
the exterior light) makes it hard to reach interactive perfor-
mance for realistic lens systems. The quality of our method
is lower when compared to these competitors, but it makes a
significant performance leap.

3. Our Approach

Lens flare is caused by light rays that pass through the optical
system, but deviate from their intended path due to reflections
at lens surfaces. In this section, we concentrate on this ray
propagation, from which we will derive an efficient method
for lens-flare rendering and add advanced features, such as
anti-reflective coatings (Sec. 3.2). Building upon this model,
we then derive several acceleration techniques (Sec. 3.3).

3.1. Ray Transfer Model

Optical Interfaces Lens manufacturers usually describe an
optical system as a set of algebraically-defined interfaces.
These interfaces are usually flat (aperture and sensor) or
spherical (because spherical lenses are common and easy
to produce). Each spherical interface is defined by a signed
radius (convexity/concavity) and a thickness measured along
the optical axis. Further, these descriptions usually contain
information about materials (types of glass or air), refractive

indices, and heights with respect to the optical axis. We will
use such optical designs available from patents or specialized
sources [Smi05] as an input (see Table 1 for an example).

Table 1: An algebraic specification of an optical system (He-
liar Tronnier; USP 2645156). Our method uses these values
directly, but ignores height for the interfaces other than en-
trance pupil and iris aperture.

radius thickness material refractive index sa (heights)

30.810 7.700 LAKN7 1.652 14.5
-89.350 1.850 F5 1.603 14.5
580.380 3.520 air 14.5
-80.630 1.850 BAF9 1.643 12.3
28.340 4.180 air 12.0

3.000 air (iris aperture) 11.6
1.850 LF5 1.581 12.3

32.190 7.270 LAK13 1.694 12.3
-52.990 81.857 air 12.3

Matrix Optics Our model is based on a first-order paraxial
approximation [Smi07]. Although this approximation induces
non-trivial errors for large angles above 10 degrees, it cap-
tures many important properties of lens systems. Further, it
allows us to handle the ray’s interaction with an optical inter-
face via a matrix multiplication. By concatenating these ma-
trices, one can describe even complex lens-system traversals
in constant time, which has an important impact on rendering
performance. Another advantage is that the analysis of an
optical system is simple and can even be executed on the
fly, while previous methods involved heavy preprocessing to
reduce rendering times [HESL11].

The paraxial assumption refers to a small-angle approxima-
tion, which proved useful for the analysis of optical sys-
tems [Smi07]. It relies on a first-order Maclaurin expansion,
which implies that sinθ≈ θ, tanθ≈ θ, and cosθ≈ 1. Further-
more, it is assumed that all incoming rays are meridional rays
(a ray that is contained in a plane which includes the optical
axis). Via the symmetry of the interfaces and the paraxial
assumption, it is possible to apply a 2D analysis and all in-
terfaces become parallel lines with corresponding interaction
matrices.

An optical ray r, whose staring point is at distance z to the
sensor plane, is represented by a 2D vector r = [r θ]ᵀ, where
r is a signed offset of its origin from the optical axis, and θ

the angle (positive on an upward angle) between the ray and
the optical axis (see Figure 2).

The interaction of a ray with a single interface i can be de-
scribed via a 2× 2 ray transfer matrix Mi, often dubbed as
ABCD matrix. For our purpose, the matrices for refraction,
reflection, and travel in a homogeneous media between two

θ
r

z

Figure 2: 2D-vector notation of a ray r = [r θ]ᵀ.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

S. Lee & E. Eisemann / Practical Real-Time Lens-Flare Rendering

Table 2: Common ray transfer matrices [PPP07], where di
is a positive displacement to the next interface at interface i,
n1 and n2 the refractive indices at interface i and Ri its lens
radius (R > 0/R =∞ for convex/flat interfaces).

Optical component Ray transfer matrix

Translation (Ti)
[

1 di
0 1

]
Refraction at spherical dielectric interface (Ri)

[
1 0

n1−n2
n2Ri

n1
n2

]

Reflection from a spherical mirror (Li)

[
1 0
2
Ri

1

]

interfaces are needed. We denote Ti the translation matrix
with displacement di, Ri the refraction, and Li the reflection
matrices at interface i. The matrices can be found in Table 2.
They involve only values given by the lens description (re-
fraction indices and radii) and can thus be computed for the
optical system. It is important to point out that, although in-
terfaces are represented as lines (because the model considers
meridional rays), the interaction matrix is derived for curved
(spherical) interfaces. This choice leads to a better approxi-
mation (including magnification) and explains the presence
of radii in the formulae.

3.2. Lens-Flare Rendering

As each interface an interaction corresponds to a matrix, the
entire trajectory of a ray through the optical system can be
defined by a series of matrix multiplications. While standard
system matrices only describe the transmission of an intended
light path towards the sensor, we are interested in pursuing
rays that lead to lens flares. As indicated before, these rays
are characterized by an even number of reflections on their
path; rays with an odd number of reflections eventually end
up at the entrance pupil. Following previous work [HESL11]
(and also because each reflection leads to a significant energy
loss), we only consider paths with two reflections. Hence,
there is only a finite set of matrices, which we refer to as
flare matrices. The matrices describe possible lens-flare tra-
jectories in the system, i.e., each matrix corresponds to one
ghost. It is noteworthy that an inverse ray trajectory (from the
first reflection back to the second reflection) can be described
by multiplying the inverses of the corresponding ray transfer
matrices (except for the translations). Figure 3 (top) shows
an example of a flare path with two reflections (at I4 and I2).

Flare-Quad Mapping The above ray propagation model
could be used directly to define realistic displacement func-
tions for sprite-based approaches [Kil00]; due to the linearity
of our system, the entrance pupil could be bound with four
vertices corresponding to four rays, whose direction is given
by the light direction. These vertices form a flare quad, which
can be mapped directly to the sensor using the flare matrices.
The projected quad, after applying a flare matrix, can then

d0 d1 d2 d3 d4 d5 d6d7 d8 d9

n1 n2 n4 n7 n8n0 n3 n5 n6 n9

r

I1I0 I2 I3 I4I5 I6 I7 I8 I9 I10

Entrance pupil Iris aperture Sensor plane

Mf = D9D8D7T6D5D4D3T2L2
−1T2R3

−1T3L4D3D2D1T0

Ms Ma

Figure 3: Flare matrix formulation for Heliar Tronnier. I, d,
and n indicate optical interfaces, distances between optical
interfaces, and refractive indices, respectively.

be used as a sprite that represents one ghost. Blending the
solutions for all flare matrices leads to the final lens-flare im-
age. In what follows, we will describe techniques to improve
realism, while Section 3.3 will cover acceleration techniques.

Flare Shape Instead of using an ad hoc sprite, the shape
of a ghost actually comes mostly from the optical system’s
aperture. In order to integrate the aperture in our model, we
represent each flare matrix M f as the product of two matrices;
Ma (from the entrance pupil to the iris aperture) and Ms
(from the iris aperture to the sensor plane) with M f = MsMa.
Figure 3 (bottom) illustrates such a decomposition. We define
Dn := TnRn for a concise notation.

With these two separate matrices, one can map rays from the
entrance pupil to the aperture and then to the sensor. When
representing the aperture as a texture (Figure 4), a simple
lookup after applying Ma can determine if a ray is blocked.
For a flare quad, it is thus enough to apply the aperture texture
using texture coordinates that stem from the flare quad’s
mapping via Ma on the aperture plane. The texture-mapped
quad is then projected on the sensor using Ms.

It is important to notice that, in the decomposition, the two
reflections are assumed to occur on the same side of the
aperture because, otherwise, these light rays would need to
pass the aperture three times. While it would be possible to
consider a decomposition into four matrices, we decided to
ignore these flare matrices completely, as it is unlikely to
happen because the aperture is typically small. Similarly, in
a full model, light rays could also hit the tube enclosing the
lenses inside the optical system. We ignore these rare cases as
well, with one exception; the entrance pupil’s shape should
not be neglected (Figure 5), as it refines the coarse initial flare
quad. It can again be represented as a texture (or, if circular,
by a threshold on the distance to the optical axis). We handle
this situation—similarly to the aperture—by clipping those
pixels of the projected flare quad on the sensor, whose initial
position lies outside the entrance pupil.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

S. Lee & E. Eisemann / Practical Real-Time Lens-Flare Rendering

f /2.0 f /2.8 f /4.0 f /5.6 f /8.0

Figure 4: Possible textures for an iris aperture.

(a) Without clipping (b) With clipping

Figure 5: Effect of clipping against the entrance pupil.

Intensity and Color Intensities of ghosts can vary, because
their size can differ drastically. Nonetheless, it is easy to scale
the intensity correctly using the projected flare quad size.

A more complex subject is the handling of per-flare col-
oration, resulting from anti-reflective coating [HESL11]. The
exact color can be computed using Fresnel anti-reflective
(AR) coating; refer to the supplementary material of Hullin et
al. [HESL11] for implementation details. However, our linear
model will only support a single color per ghost, because we
do not perform full ray tracing and per-ray reflections cannot
be computed accurately. Nonetheless, even when tracing just
a single ray in the center of each flare quad, it often captures
the ghost’s characteristic color well (Figure 1).

To improve accuracy of our simulation, we can also con-
sider wavelength-dependent dispersion. For our purposes, we
rely on a standard RGB decomposition (assuming λR = 650,
λG = 510, λB = 475 nm) and compute wavelength-dependent
refractive indices (and flare matrices) using Sellmeier’s ap-
proximation [Sel71]. Our method is then applied for each
color channel separately, which leads to acceptable results. In
Section 3.3, we turn the three-pass into a single-pass method.

Finally, a direct light can be approximated using far-field
diffraction (Fraunhofer approximation), which is equivalent
to the scaled Fourier transform of the aperture. We pre-
compute these starburst patterns with respect to all the wave-
lengths, following Hullin et al. [HESL11].

3.3. Accelerations

The previously-described algorithm, summarized in Figure 6,
already leads to an important speedup compared to previous
work, but it can still be improved. Here, we describe how
to reduce rasterization cost, how to handle multi-spectral
rendering efficiently, and other acceleration techniques.

Rasterization Our previous approach maps the entire flare
quad to the sensor. While this projected flare quad can cover
a large area on the sensor, most of the rays it represents might
have been blocked by the aperture. Although these pixels do
not contribute to the final result, they are still produced and

Preprocessing

Load and compile
optical elements

Ray path planning for flares
(find reflective interfaces)

Run time

Pre-generated textures

Direct light

clear frame buffer

for each flare
for each RGB channel

build flare system matrices
compute AR coating color

analyze input bound *
trace 4 rays for flare quad

find sensor projection
find intensity

draw flare quad (for RGB channels)*

render direct light

* Acceleration techniques

DFT

Aperture

Figure 6: Overview of the rendering pipeline of our system.

Entrance pupil Iris aperture Sensor plane

e
-

a
-

a
+

s
-

s
+

s

a
-1

a
-1

s

e
+

Figure 7: Bounding of an input quad at the entrance pupil
(blue arrows) using the two endpoints at the iris aperture and
their mapping onto the sensor (red arrows). Note that there is
an inversion between the iris aperture and the sensor plane.

then discarded. Instead, it would be more efficient to choose
a flare quad, which more closely encompasses the rays on the
entrance plane that will actually pass through the aperture.
Mapping this smaller flare quad will significantly reduce the
cost of the subsequent rasterization.

In nonlinear optical systems, it is non-trivial to find the input
rays that reach the aperture. Consequently, a costly prepro-
cessing of several hours is needed, involving exhaustive ray
tracing [HESL11]. In contrast, in our model, a matrix analysis
allows us to find a tightly bounding flare quad.

Let’s denote a ray on the entrance plane re = [re θe]
ᵀ and on

the aperture plane ra = [ra θa]
ᵀ. Denoting Ma the matrix that

maps rays from the entrance to the aperture plane, we have
re = M−1

a ra. As the angle θe is given by the light direction,
we can solve the equation for re for any given ra:

re := (ra−M12
a θe)/M11

a , (1)

where M11
a and M12

a represent the first and second element
of Ma. By choosing ra values that tightly bound the aperture
and using Equation (1), we can compute a restricted flare
quad on the entrance pupil (Figure 7). This simple strategy
led to important speedups ranging from 1.7 to 5.2, due to the
reduced rasterization costs.

The intensity of the flare is initialized with the ratio of the
flare quad with respect to the entrance pupil, which is finally
modulated again by its projected size.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

S. Lee & E. Eisemann / Practical Real-Time Lens-Flare Rendering

261.32 fps

3.82 fps

733.67 fps

12.69 fps

1496.82 fps

131.64 fps

Canon Zoom 70-200 mm (f/11) Nikon Zoom 80-200 mm (f/8.0) Heliar Tronnier (f/22)

1614.52 fps

60.15 fps

Angenieux (f/22)

261.32 fps (3.83 ms)

3.82 fps (261.55 ms)

733.67 fps (1.36 ms)

12.69 fps (78.82 ms)

1496.82 fps (0.67 ms)

131.64 fps (7.60 ms)

1614.52 fps (0.62 ms)

60.15 fps (16.62 ms)

PSNR=18.81 dB, SSIM=0.961 PSNR=10.81 dB, SSIM=0.772 PSNR=17.44 dB, SSIM=0.936 PSNR=30.72 dB, SSIM=0.981

Figure 8: Lens-flare rendering for various optical systems at a display resolution of 1280×720. The upper row was generated
with our system, the lower row with Hullin et al. [HESL11]. The effect of a single ray evaluation of the AR coating and the
paraxial approximation is particularly visible for the cyan flare in the upper right corner of the Canon example. Nonetheless,
most flares are well represented and the overall look is reproduced at much higher framerates.

Multi-Spectrum Acceleration The previously-mentioned
three-pass solution, considering RGB channels independently,
triples the rendering cost. For a single-pass solution, we first
find a conservative flare quad that encompasses the offsets
of all different channels. In most cases, such a quad is only
10–20% larger than for a single wavelength. Then, the texture
coordinates for different wavelengths can be expressed with
respect to a primary texture coordinate (e.g., the green chan-
nel). Then, the rasterization step of the projected flare quad
can treat all three wavelengths at once. This simple strategy
leads to a significant acceleration and doubles performance,
by reducing rasterization and blending costs.

Intensity-Based Culling In many cases, more than half of
the flare quads are rendered with low intensity and have
little impact on the result. We can safely skip these flare quad
entirely with negligible quality loss. Further, these cases often
coincide with a large projected size and, hence, significant
rasterization costs, making this choice doubly beneficial.

4. Results

Rendering Performance Our system was implemented in
Direct3D 10 on an Intel Core i7 3.4 GHz with an NVIDIA
GTX 680 graphics card. Performance measurements for dif-
ferent lens systems can be found in Figure 8. We compared
our results to a recent state-of-the-art algorithm [HESL11]
(with 512×512 as a grid resolution for their bundle tracing).

For all of the optical systems, our approach reached high
framerates ranging from 261 Hz (for a Canon zoom lens
of high complexity) to 1615 Hz (for Angenieux of medium
complexity), making it a suitable solution for real-time appli-
cations (e.g., games or virtual reality). The speedup factors
compared to the reference range from around 10 to 70.

As previous real-time approaches [Kin01, Mau01, Sek04,
Oat04], our solution also relies on texture sprites. Hence, its
cost is comparable to these solutions and the overall perfor-
mance mostly depends on the number of flare quads. Further,

Figure 9: Culling low intensity flares can boost performance
drastically (34% speedup here) with low visual impact.

reducing rasterization costs, is important and leads to a 2
times speedup for simpler lenses (Heliar Tronnier), and 5
times for complex systems (Nikon Zoom). We did not make
use of flare culling for the comparison, which would have
lead to an additional more than 30% speedup (see Figure 9).

Image Quality Overall, our solution achieves a compara-
ble appearance with respect to the reference renderings. For
mostly linear systems such as Heliar Tronnier, our solution
matches the appearance almost perfectly. However, more
complex systems with nonlinear deformations can result
in non-trivial differences. This is a natural consequence of
our linear model with the paraxial assumption, which lacks
the support for higher-order ray transfer. A comparison to
the reference images and quantitative differences (for 8-bit
LDR RGB images—hereby, avoiding a bias due to bright-
ness peaks) in terms of the signal-to-noise ratio (PSNR) and
structural similarity (SSIM) [WBSS04] is shown in Figure 8.

5. Discussion and Limitations

The main approximation of our method is the paraxial as-
sumption. It well captures the basic geometric appearance
(e.g., size and position of ghosts). It represents a minimal
form of the polynomial approximations [HHH12], hence,
leading to a constant-time ray propagation. Nonetheless,
complex optical behaviors such as deformation, topological
changes, and aberration are not handled correctly (Figure 10),
leading to the main differences with respect to the reference.

We performed an experiment with a pre-recorded 3D look-up

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

S. Lee & E. Eisemann / Practical Real-Time Lens-Flare Rendering

(a) Rendering with our linear model (b) Reference rendering (d) Our result with a 3D deformation texture (e) Reference
74.87 fps (13.36 ms) 1.51 fps (663.88 ms)

PSNR=26.91 dB, SSIM=0.977Ghost #133 (Nikon Zoom) Ghost #133 (Nikon Zoom)

(c) Our result without deformation

PSNR=20.19 dB, SSIM=0.941

71.52 fps (13.98 ms)

Figure 10: Nonlinear deformations. A strongly distorted ghost (b) and our linear result (a). An extreme case; using our linear
model (c), our 3D texture solution (d), and the reference (e).

texture to determine the shape of the nonlinear flares based
on the current light angle. Usually, less than 10 % of the
lens-flare elements behave strongly nonlinearly—here, 24
out of 312. Even in extreme cases (Figure 10), the image
quality is improved (SSIM=0.97) via the deformation texture.
Its construction takes a few minutes, when relying on effi-
cient reference renderers. However, this approach has certain
drawbacks. It consumes additional memory; e.g., for a spatial
resolution of 512×512 and an angular resolution of 128, 96
MB are required per ghost. Further, integrating several flare
elements in the same texture makes it impossible to correctly
orient the ghosts, when the light rotates around the optical
axis. The disadvantages outweigh the quality gain, which is
why this technique is not used elsewhere in the paper or video.
An analytical deformation model could be an alternative, but,
currently, it seems out of reach and remains future work.

For acceleration purposes, we only considered two reflections
on the same side of the aperture. Our solution could be ex-
tended to general reflections, but we consider the restriction
useful, as each reflection reduces the transported energy sig-
nificantly. We also neglected energy loss from transmission
and absorptance; which are usually marginal (e.g., up to a few
percent of losses) and do not justify additional overheads.

6. Conclusion

We presented a practical real-time lens-flare approach that
delivers physically-plausible results based on a given descrip-
tion of an optical system. Our approach builds upon a first-
order paraxial approximation that allows us to describe light
propagation as a matrix multiplication. Hereby, our solution
not only accelerates online computations, but also simplifies
the analysis of the lens system, which enables us to intro-
duce further accelerations. Our solution delivers competitive
results when compared to state-of-the-art solutions, and ex-
ceeds the quality of previous real-time approaches.

Acknowledgments This work was supported by the Basic Sci-
ence, Mid-career, and Global Frontier (on Human-centered Inter-
action for Coexistence) R&D programs through the NRF grants
funded by the Korea Government (MSIP) (No. 2011-0014015,
2012R1A2A2A01045719, and 2012M3A6A3055695) and the In-
tel Visual Computing Institute at Saarland University.

References
[Als09] ALSPACH T.: Vector-based representation of a lens flare.

US Patent 7,526,417, 2009. 2

[Cha07] CHAUMOND J.: Realistic camera - lens flares.
http://graphics.stanford.edu/wikis/cs348b-07/JulienChaumond/
FinalProject, 2007. 2

[HESL11] HULLIN M., EISEMANN E., SEIDEL H.-P., LEE S.:
Physically-Based Real-Time Lens Flare Rendering. ACM Trans-
actions on Graphics 30, 4 (2011), 108:1–9. 1, 2, 3, 4, 5

[HHH12] HULLIN M. B., HANIKA J., HEIDRICH W.: Polynomial
Optics: A construction kit for efficient ray-tracing of lens systems.
Computer Graphics Forum (Proc. EGSR’12) 31, 4 (2012). 1, 2, 5

[Kes08] KESHMIRIAN A.: A physically-based approach for lens
flare simulation. Master’s thesis, University of California, San
Diego, 2008. 2

[Kil00] KILGARD J.: Fast OpenGL-rendering of lens flares.
http://www.opengl.org/resources/features/KilgardTechniques/
LensFlare/, 2000. 2, 3

[Kin01] KING Y.: 2d lens flare. In Game Programming Gems 2,
DeLoura M., (Ed.). Charles River Media, 2001, pp. 515–518. 2, 5

[KMH95] KOLB C., MITCHELL D., HANRAHAN P.: A realis-
tic camera model for computer graphics. In Proc. ACM SIG-
GRAPH’95 (1995), pp. 317–324. 2

[LES10] LEE S., EISEMANN E., SEIDEL H.-P.: Real-Time Lens
Blur Effects and Focus Control. ACM Transactions on Graphics
(Proc. ACM SIGGRAPH’10) 29, 4 (2010), 65:1–7. 2

[Mau01] MAUGHAN C.: Texture masking for faster lens flare. In
Game Programming Gems 2, DeLoura M., (Ed.). Charles River
Media, 2001, pp. 474–480. 2, 5

[Oat04] OAT C.: A steerable streak filter. In Shader X3, Engel W.,
(Ed.). Charles River Media, 2004, pp. 341–348. 2, 5

[Pix08] PIXAR: The imperfect lens: Creating the look of Wall-E.
Wall-E Three-DVD Box, 2008. 1

[PPP07] PEDROTTI F. L., PEDROTTI L. M., PEDROTTI L. S.:
Introduction to Optics. Pearson, 2007. 3

[SDHL11] STEINERT B., DAMMERTZ H., HANIKA J., LENSCH
H. P. A.: General spectral camera lens simulation. Computer
Graphics Forum 30, 6 (2011), 1643–1654. 2

[Sek04] SEKULIC D.: Efficient occlusion queries. In GPU Gems,
Fernando R., (Ed.). Addison-Wesley, 2004, pp. 487–503. 2, 5

[Sel71] SELLMEIER W.: Zur Erklärung der abnormen Farbenfolge
im Spectrum einiger Substanzen. Annalen der Physik und Chemie
219 (1871), 272–282. 4

[Smi05] SMITH W. J.: Modern Lens Design. McGraw-Hill, 2005.
2

[Smi07] SMITH W. J.: Modern optical engineering: the design of
optical systems. McGraw-Hill, 2007. 1, 2

[Toc07] TOCCI M.: Quantifying Veiling Glare. http://www.zemax.
com/kb/articles/192/1, 2007. 2

[WBSS04] WANG Z., BOVIK A. C., SHEIKH H. R., SIMON-
CELLI E. P.: Image quality assessment: From error visibility
to structural similarity. IEEE Trans. Image Proc. 13, 4 (2004),
600–612. 5

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

http://graphics.stanford.edu/wikis/cs348b-07/JulienChaumond/FinalProject
http://graphics.stanford.edu/wikis/cs348b-07/JulienChaumond/FinalProject
http://www.opengl.org/resources/features/KilgardTechniques/LensFlare/
http://www.opengl.org/resources/features/KilgardTechniques/LensFlare/
http://www.zemax.com/kb/articles/192/1
http://www.zemax.com/kb/articles/192/1

