SIGGRAPH2015

Xroads of Discovery

Q@ \

e

’&, SIGGRAPH2015 | [ieassie Sommmimis,
roads or biscovery

Bandwidth-Efficient
Rendering

Marius Bjarge
ARM

Agenda

« Efficient on-chip rendering

* Post-processing
— Bloom
— Blur filters

Efficient on-chip rendering

e Extensions
— Framebuffer fetch
— Pixel Local Storage

* Why extensions?
— Surely mobile GPUs are already bandwidth-efficient?

Framebuffer fetch

« Read the current fragment’s previous color value

 ARM also supports reading the previous depth and stencll
values of the current fragment

» Useful for
— Programmable blending
— Programmable depth/stencil testing

Pixel Local Storage (PLS)

* Per-pixel storage that is persistent throughout the lifetime

of the frame

— Read/write access

— Storage stays on-chip

— Storage layout declared per fragment shader invocation — does

not depend on framebuffer format

» Useful for

— Deferred shading

— Order Independent Transparency [1]

— Volume rendering

Pixel Local Storage (PLS)

Rendering pipeline
changes slightly when
PLS is enabled

— Writing to PLS bypasses
blending

Note

— Fragment order

— PLS and color share the
same memory location

Fragment Shading

:

PLS / Color

Tilebuffer

Pixel Local Storage (PLS)

Opaque phase OIT phase

Fill gbuffer Light . I| Init OIT I| Transparent I| Resolve I
I accumulation I I I rendering I I

Pixel Local Storage
RGB10A2 | RGB10A2 RG16F RG16F R32UI R32UI R32UI R32UI

At this point we change
the layout of the PLS

o)
=
0
)
Q
O
O
e
o

Post-processing

High-end mobile devices typically have small displays
with massive resolutions

Rendering at native resolution is often out of the question,
especially if you add post-processing to the mix

Solution: mixed resolution rendering
— Go as low as you can without sacrificing quality, and then upscale

Mobile post-processing

Off-chip

On-chip
« Color Grading
« Tonemapping

Anti-aliasing
Bloom
Depth of Field

Screen Space Ambient
Occlusion

Screen Space Reflections

Threshold Composite

Blur

Blur

« What makes a good blur filter?
« Goal:

— High quality

— Stable

— High performance

Box blur

« 5x5 box blur = 25 samples

« Separate the blurs
— 5+ 5 =10 samples

« Convolve a gaussian

« Separable just like the

Gaussian blur

function over the image

box filter

Linear sampling optimization [2]

« Reduce number of B
texture lookups by HEEEE Bpges
exploiting the HW texture | EEEEEEER RN

unit
— Modify sample offsets and 1
gaussian weights

e Get 9x9 at similar cost as
5x5 BEEEDl DR

Mixing resolutions

Mixing resolutions

« Gets increasingly complicated when using separable
kernels

Kawase blur [3]

“Dual filtering”

Downsample filter Upsample filter

Comparing filters

Comparison setup

O7x97 blur
Gaussian used as reference

Kawase
— First downsample to 1/16™ resolution
— Setupwith 0, 1, 2, 3, 4, 4, 5, 6, 7 distances passes

“Dual filtering” setup with 8 passes
Naive method which relies on glGenerateMipmap

PSNR: 49.78 dB 50.02 dB

Stabllity comparison

Reference Kawase

S

Cr e Srazepaary = SISO
R SRR s R
RS RIRRIL O
(s RIS R
SR, 3 R RRIRRSRIRIS
R RN

SRS
RIS

RERGLLHLRS
“ 6%

Reference Kawase

A

1}'0:"‘.0'“
AR
N
IS

f
Aok

A
AR
O

e
K

“‘*‘“ o 0“". SR
LI

7
[AN
i, OO
..am:“ .‘,.;I;::;::':::ﬂ:‘:‘::‘:g\\\\
SRR :v:.;cy,:::;.\t..' 5
= 4505

(f
SRR
RN
% 255

Performance comparison

Performance (ms)

45 41.9

Gaussian Box 5x5 gaussian Kawase Dual

Tested on a Mali-T760 MP8

Bandwidth

100% 98%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

® Reads
m Writes

Linear sampling 5x5 gaussian Kawase Dual
reduction

Cache utilization

80%

70%

60%

50%

40%

30% m Hit
20%

10%

0% | il . .

Linear sampling 5x5 gaussian Kawase Dual
reduction

Summary

* On-chip rendering
— Please use the extensions

* Bloom

— Multi-pass mixed resolution
— “Dual filter” blur

* Next steps
— Work on getting on-chip rendering into future core APIs
— Look into alternative data flows for doing blurs

Thanks!

* Questions?

» References

1. Efficient Rendering with Tile Local Storage [Siggraph 2014]
2.

3. Frame Buffer Postprocessing Effects in DOUBLE-S.T.E.A.L
[GDC 2003]

mailto:Marius.Bjorge@arm.com
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/

