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Abstract 
 
A vast number of creatures in the animal kingdom exhibit some kind of fur. This paper 
presents a complete ‘shells and fins’ method for modelling this fur in real-time for use in 
interactive systems. A wide range of properties are researched, evaluated and adapted for 
use in the project. 
 
Original methods are presented for hair type interpolation and fur dynamics. Here, the 
concept of hair domination is introduced as a method to decrease hair quantities in a fur 
patch, and the wind vector animation approach is adapted for use on fur. 
 
A review is then made against other methods of fur rendering to develop concept for 
further work. 
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Chapter 1: Introduction  
 
 
The primary aim of interactive 3D worlds is to create an immersive, believable environment for the 
user to navigate. For this to be achieved, realistic people and animals must be created and made to 
interact with the world. One major problem that must be resolved to achieve this is that a vast 
majority of these creatures will exhibit some kind of fur or hair that must be controlled and 
rendered in real time.  
 
Due to the volumetric nature of fur, it is very rare that and attempt is made to replicate it in real-
time systems, although there has been a slight increase in recent years as GPU’s have become more 
powerful. The main purpose of this project is to research, design and build an implementation of 
real-time fur that has the potential to be used in any interactive system. There are countless 
different kinds of fur present in the animal kingdom, and it would be impossible to create a single 
system that could render them all. Having considered the type of furry creatures that are most 
likely to be included in a real-time system, it is concluded that short fur is to be the focal area. 
Therefore, the resulting methodologies of this project should be tailored accordingly. 
 
Previous works in the field have provided several techniques for the rendering of fur, and will be 
analysed to find the best approach. There is also two defining areas that seem to be absent from 
previous work which are to be considered during the course of this project. These are the concepts 
of realistic dynamics, and transitions between numerous hair types on the same creature. The latter 
is an important problem as it produces obvious breaks in the image when producing mixed type 
animals (for example, a monkey with thick black hair on its head, but only small finer hairs around 
its face, would produce a rendered image where the fur types will change suddenly around the 
face). Both these features are considered to be extremely important in producing a realistic 
representation, and are therefore specified as secondary objectives for this project. 
 
There will be a number of constraints in place upon the system. The most important of these being 
that the frame rate must remain above 15fps (widely accepted as the absolute limit for a system to 
be considered interactive [1]) with both the hair type and dynamic options implemented. Ideally a 
frame rate of 30fps or higher should be achievable on a 1,000 polygon base model. This would 
present reasonable evidence that the methods were sufficient for use in more mainstream systems 
such as games and simulators. The project will be tailored towards the Radeon9600 range as this 
gives the largest scope for GPU based programming. It is also a reasonable target platform as the 
fourth generation cards will be common place by the time a solution could be implemented in a 
real-world application. 
 
The paper is organised as follows: Chapter 2 considers the achievements of previous work in the 
field, considering the visual appearance and efficiency of the techniques described. The most 
appropriate methods for this project will be indicated. Chapter 3 then analyses any problems with 
these techniques, and suggests adaptations for use in this project. In cases where no suitable 
technique could be found, one or more conceptual solutions are proposed. Chapter 4 the design and 
implementation of FurMak, a pre-processor for the system, is dicussed. This is then followed by  a 
discussion around the design and implementation of FurGLe, the main rendering program, in 
Chapter 5. Chapter 6 then evaluated the achievements of the project in detail, indicating the scope 
for further work. Finally, Chapter 7 draws a conclusion on the project as a whole. 
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Chapter 2: Literature Review  
 
Real-time fur has been a research topic for quite some time, resulting in a wide range of research 
papers that will be of use in this project. This chapter aims to discuss this past work, along with 
that in similar areas, before considering the suitability of the methods suggested. 
 
Section 2.1 considers the different methods used in the past and present for the modelling and 
rendering of fur. Section 2.2 then looks into the chosen method in more detail, considering 
different techniques used for length, combing, colouration and lighting. Section 2.3 discusses two 
approaches for the offline generation of fur for use in the real time system, followed by an 
investigation on how to apply these textures in Section 2.4. Finally, Section 2.5 looks at the work 
previously done in the area of fur dynamics. 
 
 
2.1 Approaches to Modelling Fur 
 
In the early days of 3D Graphics, fur was rendered using a Brute Force approach. Whilst this 
produced good results it was extremely expensive, and required hundreds of man-hours to model 
and animate each hair. Thankfully, the improvement of technology has allowed more efficient 
methods to be produced, many of which can be optimized for real-time use. The most viable of 
these are discussed in this section. 
 
 
2.1.1 Polygon Strip Approach 
 
The most common approach used commercially is that of polygon strips (not to be confused with 
stripification). With this technique, side-view texture maps of fur are generated and displayed on 
polygons vertical to the skin surface. These are then layered behind each other giving the 
impression of dense fur. 

  
The problem with this technique is evident from the illustration above. If the displayed patch of fur 
was viewed from the side or from directly above, then the infinitely thin polygon strips would not 
be visible, resulting in no fur being rendered. 
 
This can be resolved in two different ways. The first is to use a method known as ‘cross-hatching’, 
where strips are arranged at a multitude of angles across the skin surface, resulting in fur being 
visible from any side-view angle. The individual strips can also be broken up into a number of 
non-vertical segments to produce wavy hair, and allow overhead views to be accounted for. Whilst 
this can produce good results if the polygon strips are small enough and arranged correctly, it 
results in extremely complex and intensive geometric models.  
 
Another approach is to incorporate a process known as Billboarding. This process rotates any 
given polygon strip to always face towards the camera, ensuring a suitable coverage of rendered 
fur from any side-on viewpoint. One problem with this method is that the polygon strips must be 
quite small so that the rotation of each strip in respect to the model orientation is not perceptible to 
the user. The main problem however is that the billboards can only rotate around an axis normal to 
the face upon which it is placed, making overhead views with this technique impossible. 

Figure 2.1 
 
Representation of how polygon 
strip fur is produced from side-
view texture maps. 
(Fur texture modified from [2]) 
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2.1.2 Texels Approach 
 
(Note: This method was developed before the term ‘texel’ was coined to represent a texture element. For the 
rest of this sub-section only [2.1] the term ‘texel’ will refer to Kajika & Kays original definition.) 
 
One of the best methods to date, by way of visual quality, is the texels model developed by Kajiya 
& Kay in 1989 [3]. Here the texels concept was introduced; a texel being a 3D-Array storing 
approximations to the density and lighting properties of points in a volume space (similar in 
concept to modern day voxels). A ray-marching algorithm then travels through this array from 
each screen pixel combining the parameterised density and lighting values from each texel-element 
in order to produce a final screen colour. 
 
Whilst this method produces very good results, it is extremely slow and requires large amounts of 
memory to store information for every texel in the virtual world. Therefore it is not suitable for 
real-time use, but a number of its concepts can be ‘borrowed’ for implementation in other 
techniques. 
 
 
2.1.3 Shells Approach 
 
In 1998 Meyer and Neyret adapted the texels approach for real-time rendering using traditional 
texture mapping methods supported by graphics card hardware [4, 5]. Lengyel further adapted this 
two years later to form the shells approach for fur rendering [6]. 
 
The basic premise behind this method is an adaptation of the texels approach to utilise traditional 
texturing methods. Meyer and Neyret realised that by rendering a series of layers, or shells, upon 
which cross-sections of a fur ‘patch’ are rendered, the result mimicked a minimized texel volume 
around the model surface. 
 
Each cross section of the fur volume is stored as an alpha texture map generated ‘offline’ prior to 
display. These can then easily be rendered at increasing distances from the base model to represent 
a 3D volume of fur. Figure 2.2 illustrates this concept using a single texture map for simplification, 
but in practice a different mask is used for each layer allowing a wide range of curly hair patterns 
to be produced. The positioning of each shell is obtained by an equal-step displacement along 
 the normal of each vertex. A 

major advantage of this property 
is that combing can be 
represented simply by changing 
the normal vector at each vertex.  
 
Figure 2.2 - 
Representation of how the shells 
method can represent volumetric 
texture using 2D texture maps. 

 
The visual quality of this method is highly dependant on the number of shells. Higher shell counts 
will obviously give a ‘fuller’ volumetric texture, but will greatly increase the cost of computation. 
Tests show that good results can be achieved with just 8 shells in most situations, but the extra 
spacing between these layers can produce breaks in the hairs when viewed at angles over 45º from 
above.  
 
The main problem with this method is that even if the shell count was increased, it would still 
break down when viewed from the side due to the infinitely thin shells not being rendered. Lengyel 
acknowledged this problem, and through collaboration with Microsoft [7] the concept of fins was 
introduced. 
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The fins technique extends the shells model by drawing 
polygon strips between each base polygon edge and the 
corresponding edge on its uppermost shell (one of 
which is illustrated in Figure 2.3). For efficiency, these 
strips are only shown towards the silhouettes of the 
model where the gaps between shell textures are most 
evident. Whilst this is still not as good as the full 
polygon strip model for side-on viewing, it does 
produce acceptable results. 
 

Figure 2.3 
 The correlation between shells and fins  

 
 
2.1.4 Summary 
 
After consideration, neither of the polygon strip techniques seem suitable for real-time fur 
rendering. The crosshatching method would probably produce the best visual result out of the 
given methods, but the intensity and complexity of the geometry required would result in slow 
rendering times. This arrangement would also make fur type interpolation and dynamics extremely 
difficult to compute. This method would be better suited for primarily side-view volumetric 
rendering such as real-time grass [8]. 
 
The bill boarding approach would be more efficient than the crosshatching method, but has no 
support for top-down viewing. Considering that the majority of visible fur on a creature will be 
pointing within 45º of the viewing angle this technique can be instantly ruled out. This method 
would be better suited with longer hair where end-on viewing is very rare. [9] 
 
The shells and fins technique, with its focus towards overhead viewing is chosen as the best choice 
for this system. It is also theoretically more efficient than a polygon strip model of the same visual 
quality. The only major restriction with this method is that the fur can only be combed to a 
maximum of 45º, but in most cases this will not be a problem. 
 
 
 
2.2 Shell and Fin Variants 
 
The shells/fins technique has been implemented a number of times since its introduction with 
slight variations in some of the corresponding techniques. This section considers the various 
methods used for the length, colouration and lighting aspects of fur rendering. 
 
 
2.2.1 Length 
 
In their defining paper [7] Lengyel et al. suggest that a value representing the local length of fur is 
stored at each vertex. The shells are then spread evenly along the vertex normal between the vertex 
world-space co-ordinate and the point of magnitude equal to the length value along the vertex 
normal. The number of shells remains constant throughout the model regardless of any local length 
values, and the fins always stretch between the skin and the uppermost shell, ensuring correct 
silhouette fur length. 
 
Due to the rapid increase of GPU processing speeds, sufficient polygons can be produced to 
represent almost any fur variations in real-time with this model. As a result, no other methods have 
been proposed to extend this technique. 
  

Shells 

Base Mesh 

Fin 
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The only area that is not accounted for by this method is with formations such as whiskers, or the 
tufts on a lynx’s ears, where extremely large changes occur over a very small area. Whilst this 
could be modelled using this method, it would require extremely small polygons and would be 
extremely expensive for the result obtained. The graphical quality would also be very poor, as can 
clearly be understood when you consider rendering a long cat whisker using only 8 or 16 small 
circles. 
 
 
2.2.2 Colour 
 
Real fur is not all the same colour. Each individual strand varies ever so slightly from those around 
it, and in some cases can be very different indeed (e.g. the occasional grey hair). This trait needs to 
be modelled within the system to improve the realism of the final output. There have been two key 
methods proposed to date in order to achieve this: 
 
The Lengyel Method [7] 
This is the simpler, and older of the two models. Each layer of a shell has its own texture map that 
indicates both the existence and colouration of a hair at any given point. That is, each texel on a 
shell’s map either contains the colour of a single strand of fur at that point, or a full alpha value 
indicating that no hair is present in that area. Whilst very versatile, allowing hairs to change colour 
in any way the developer could want, this is very memory intensive, using a full colour texture for 
every shell in the entire model. 
 
The ATi Method [2] 
This method is an adaptation of the previous, devised by Isidoro & Mitchell for ATi. Using this 
method only a single colour texture map is made for each section of fur. Each shell of the section 
therefore only has to contain a binary value at each texel representing the presence or lack of a 
hair. That is, every shell texture is a stencil mask used to ‘cut the hair’ from a single colour map. 
 
This has two main advantages. Firstly, only a single colour map is required for the base model, 
with less memory intensive binary maps for the shells. Secondly, because the shell maps contain 
no locally specific data, the same maps can be used on every polygon on the model that is host to 
the same type of hair, saving even more memory and reducing the offline processing time required 
prior to the real-time system. 
 
There was, however, a major problem in that curly hairs can change colour as they progress away 
from the skin (Figure 2.4a). To resolve this problem, the concept of Offset Maps was introduced 
(Figure 2.4b). In this map, each texel represents how far each hair has diverged from its root 
location, storing the x/y distance in texels in the red/green components of the image. Using this 
map the system can reference the correct element from the colour map for each point (Figure 2.4c). 
Like the shell maps, the offset maps contain no local specific data and can therefore be reused for 
every polygon of equal fur type. 
 

                         
 

Figure 2.4 - An illustration of the need and implementation of offset maps 
 

 
   Colour Map 

 
   Shells 

+ = 

 
   Colour Map 

 
   Shells 

 
   Offset 

 
 a. 

 
b. 

 
  c. 
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With modern day graphics cards this look-up can be done with such efficiency that there is little 
difference between the results from this method and the direct referencing of the Lengyel 
approach. This makes the ATi approach the obvious method to adopt for use in the system. 
 
 
2.2.3 Lighting 
 
Lighting is possibly the most important factor in rendering realistic images. For fur this consists of 
three key parts; the traditional diffuse and specular components, and the volume texture specific 
self-shadowing component. 
 
Diffuse 
In their defining paper [3] Kajiya & Kay defined a diffuse lighting model based upon the standard 
Lambertian model, which was later improved by Stalling et al [10]. This method has proved to be 
accurate enough that no alternative method has been provided, and therefore will be adopted for 
the project. 
 
It is important to realise that because the hairs are being modelled as a collection of 2d circles 
rather than true cones, it is not possible to light each side of the hair individually. Even if this was 
possible it would be totally impractical because each individual hair ‘slice’ will cover only a very 
small screen area (rarely more than 4 or 5 pixels), meaning this extra lighting detail would not be 
noticeable enough to warrant the extra calculations. Therefore we assume that the overall light 
intensity is equal to the maximum light intensity present on any side of that hair. 
 
To calculate this, we first have to define which side of the hair will host the maximum light 
instensity. We do this by finding the normal to the hairs direction vector that is closest to the 
incoming light source. This can be calculated by mapping the light vector to the normal plane 
using the following equation (This is illustrated in Figure 2.5) 
 

N = L - (T·L)T    (Eq. 2.1) 
where L is the vector towards the light source, 
and T is the directional vector of the hair. 

 
Having now got the normal to the 'surface' we wish to light (i.e. the side of the hair, rather than 
the cross-section) the light intensity can be calculated by substituting the previous equation into 
the Lambertian diffuse model, giving us a final diffuse equation of: 
 

D = (L–(T·L)T)·L  (Eq. 2.2) 
 
Specular 
The accompanying method by Kajiya & Kay [3] for specular lighting is also the most frequently 
used. As with the diffuse model it assumes the maximum intensity value to be true for a given hair 
section, and utilises the Lambertian lighting model. It is clear, therefore, that we must first 
calculate the halfway vector (H) between the light source and the viewing angle using the equation: 
 

H = (L + V) / (||L + V||)   (Eq. 2.3) 
Where L is the light vector and V is the view vector 

 
By substituting H into Equation 2.1, and using the Lambertian specular lighting model, we can 
define the final specular equation as being: 
 

S = ((H–(T·H)T)·H)n  (Eq. 2.4) 
Where T is the directional vector of the hair and H is the halfway 

vector. 
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Figure 2.5 

Visualisation of diffuse lighting vectors 

 
Figure 2.6 

Visualisation of specular lighting vectors 
 
 
The alternative to the Kajira & Kay lighting model described above is the use of pseudo-
reflectance maps [11]. This is an offline approach that considers a number of samples on the 
normal plane (Represented in Figures 2.5 & 2.6 as grey circles) using the Kajira & Kay lighting 
equations (Eq. 2.2 & 2.4). These samples are then averaged and stored in a texture map for use in 
real-time. Whilst this produces extremely good results, a new texture map must be generated every 
time the camera moves. However, as this project is focused towards dynamic furry creatures for 
use in interactive systems, this method is clearly unsuitable. 
 
Defining normals 
The Kajira & Kay methods work perfectly for straight fur where the hair vectors are defined at 
vertices and interpolated across the polygon. However, our system will be using curly hair, with 
many individual strands pointing in vastly different directions across a single shell. Therefore a 
method to define normals for each individual hair is required to allow per-pixel lighting to be 
implemented. 
 
A solution for this problem is proposed by Isidoro/Mitchell[2] 
and involves using a normal map for each fur shell. Here the 
x,y,z values at each point are represented by the r,g,b values of 
a texture map. Using this method, for any u,v point on a shell 
mask, the same u,v co-ordinate can be referenced from the 
normal map to obtain the local hair vector for use in the 
lighting equations. Like the mask and offset maps, the normal 
maps do not contain any locally specific data and can be 
reused with any polygon on the model that is host to the same 
type of hair. Any singular collection of these three maps for a 
type of hair will be collectively referred to as a type set for the 
remainder of this paper. 

 
Figure 2.7 

An example of a shell normal map.

 
 
2.2.4 Self Shadowing 
 
Due to the volumetric nature of the fur, there will almost certainly be some degree of self-
shadowing in any given situation. That is, the top of the hairs will block incoming light from 
reaching the base resulting in a volumetric shadow. Calculating the true shadow for each hair 
would take far too long even for offline rendering, so an effective ‘cheat’ must be found. There are 
two main approaches for solving this problem within the shells/fins methodology. 

T 
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V 
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Banks Self-Shadowing Approximation 
This works on the simple basis that the closer to the skin a segment of hair is, the darker it will 
appear. This gives a range from no shadowing at the top (i.e. full light), to the darkest possible 
shadow at the base (i.e. a minimum light value). This ‘shadow factor’ can be calculated using: 
 

S = (Dcur / Dmax) * (1 – Smin) + Smin  (Eq. 2.5) 
Where Dcur is the current shell, Dmax is the number of shells and Smin is the minimum ‘shadow factor’. 

 
The existing light value can then be multiplied by this shadow factor to give the ‘true’ light value. 
This method is extremely fast, but lacks in quality with no consideration of fur density or the angle 
of incoming light, both of which will have a large affect on the resulting shadow area. These 
conditions can be simulated by changing the Smin value for each polygon, but it would be much 
more efficient if all these considerations were combined in a single formula. The application of 
shadow is also unrealistic, as shadowing is rarely of linear increase along the full length of a hair. 
 
Another major drawback is that it only considers hair-over-hair shadows, and not the object from 
which they are protruding. Because of the manner our lighting normals are calculated, hairs that 
point directly towards and directly away from a light will calculate the same lighting intensity. 
That is to say, the hairs on the opposite side of an object than a light source will be lit as if the light 
is pointing directly at them. It should be the responsibility of the self-shadowing algorithm to 
rectify this problem and ensure that object-over-hair shadowing is implemented correctly. 
 
Shadow Maps 
An alternative to the Banks approach is a process called Shadow Mapping[12]. This method 
generates approximation shadows for each individual hair by using multi-texturing. Starting from 
the top-most layer with an empty shadow map, for each shell layer the shell map is combined with 
the current shadow map to produce a shadow map for the next shell down. This shadow map is 
then displaced along the light vector to the correct shadow location for the next layer. The shadow 
map is a binary map that either darkens (shadows) a pixel, or leaves it at its current value. This is 
then repeated down the fur shells until the skin is reached and a shadow for the entire fur patch is 
cast. 
 

           
 
 
 
 
 
 
 
 
 
 
Figure 2.8  –  a) The shadow maps approach to self-shadowing (Used with permission from [12]) 

 b)An example of implementation on a 2 hair shell set. 
 
This method produces extremely good results for vertical shells, and by calculating the shadow 
‘shift’ at each vertex of a polygon it could easily be adapted for combed hair. Its major downfall is 
that to be applied to a multi-polygon model it must used lapped textures to pass the current shadow 
map to its neighbouring polygons (as the offset will almost always push it over a polygon edge). 
Without this lapping of shadow maps, each polygon would have one or more edges with no 
shadowing producing a ‘broken’ image. This lapped texture solution is viable with flat surfaces, 
but if the surface were curved some complex buffering and transforming would be required to 
correctly lap the textures. Like the Banks approximation, this technique fails to support object-
over-hair shadowing. 

a. b. 
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2.2.5 Summary 
 
The Lengyel method for representing hair lengths at vertices is well suited for use in real-time fur 
systems. The only limitation is that large variations over small areas, such as whiskers or tufts, are 
not supported. A target of this project is therefore to provide a solution for small details such as 
these to meet the project requirement for rendering a large range of fur types. 
  
The ATi approach to colour definition is a very suitable model, and is adopted as the chosen 
method for this project. The only minor limitation is that variations over hair length, such as 
coloured roots, are not supported in this method. However, this is only a minor issue as natural 
roots are rarely visible on animals and would be too small to warrant the extra cost for rendering in 
most cases. 
 
The Kajika/Kay lighting models for ambient and specular lighting are also used due to their 
simplicity and well-documented visual quality. However, the shadowing method is a more difficult 
area. Neither as of the proposed methods are suited for full model implementation; a problem 
which is to be addressed within this project. The Shadow Maps approach would be of much higher 
quality, but would require a complex solution that would take too much time to warrant inclusion. 
Therefore the simpler task of adapting the Banks Approximation is taken, allowing more important 
areas to be focussed upon. 
 
 
2.3 Texture Generation 
 
To draw all the mask, normal, and offset textures for each shell on every fur type of a model would 
be a long and tedious task. Therefore a texture generator should be included to calculate these 
maps in an offline process given information about the fur such as thickness, density and curliness. 
 
The most complete fur generation tool to date is called FurGen and was created by ATi for use in 
their card-specific fur system. Unfortunately details on how this operates have not been published, 
and the product is not commercially available. Therefore, this section considers two existing 
methods for texture generation, and discusses the potential for adaptation to produce the type sets 
for this project. 
 
  
2.3.1 Particle System model 
 
This is the method used by Lengyel [6, 7]. A 3D bounding box is defined with the width and depth 
of the required map resolution. The height is then determined as a multiple of the number of shell 
textures required. A number of horizontal planes (called shell boundaries) equal to the required 
quantity of shells are then evenly spaced up this bounding volume.   A simulation system then 
generates fur, a hair at a time, by sending a particle through this bounding box from a randomised
 

 
 

base location. Every time it hits a shell boundary, a 
circular mark is made on the corresponding shell 
maps to indicate the presence of a hair at that 
location. The density, curliness and length of the 
fur can be controlled by varying the quantity, path 
randomisation, and lifespan of the particles 
respectively. 

 
Figure 2.9 – Generating textures using a particle system.

Bounding box 

   Shells 
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2.3.2 Noise model 
 
Another method of generating the fur textures is the Noise Model, devised by Papaioanou [12]. 
Here, uniform noise is generated to produce a random greyscale texture of the same dimensions as 
the required maps. This is then passed through a low-pass filter and a varying threshold to produce 
the shell textures as shown in Figure 2.10. 
 

 
The resulting fur will include a variety of different 
length hairs, all of which will narrow towards the top. 
Whilst this produces good results for straight hair, this 
method cannot produce curly hair without some major 
modification. Considering each hair should curl in its 
own direction, modifying this method would be very 
difficult, as there is no way of knowing where each 
individual hair is for producing the offset maps. 
 .
 
2.3.3 Summary 
 
The Noise model, whilst the faster of the two methods, is unsuitable for this project due to its 
inability to produce curved hairs. The Particle System on the other hand already supports curly 
hair, and will be extended to create the offset and normal maps required to render the hair correctly. 
Some problems may develop however due to the inclusion of these extra maps; for example, if two 
hairs happen to cross a shell at the same location it would create problems with the normal maps, as 
the first hair’s direction vector will be overwritten with the latter, resulting in incorrect lighting at 
run-time. These issues are considered in more detail later in this paper. 
 
 
2.4 Texture Application 
 
Another factor that will have a large affect on the overall quality of the system is the way in which 
the type set textures are applied to the model. Ideally the pattern should repeat continuously at 
equally regular intervals across the entire model. However, unless the model is a planar surface, 
this is not possible. This section looks at existing methods to specifying texture co-ordinates with 
this problem in mind. 
 
 
2.4.1 Inverse Mapping using an Intermediate Surface 
 
The simplest and most common approach to texturing an object is via an intermediate surface. This 
is a two stage mapping process, both of which have a number of variants dependant on the 
application required. 
 

 

Figure 2.10 – Generating textures from 
 noise (Used with permission from [12]) 
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Figure 2.11 – An example of inverse mapping using a cylindrical intermediate surface 
and intermediate surface O-mapping 

 
 

The first stage, known as the S-Mapping, consists of mapping the 2D texture to a simple 3D shape 
to convert the texture co-ordinated into a 3D domain. This intermediate shape can be any shape 
that can be represented mathematically, such as, but not limited to, a plane, sphere, cylinder and 
cube. The S-Mapping is a function of type: 
 

T(u,v) � T’(xi,yi,zi)   (Eq. 2.6) 
 
The second stage, known as the O-Mapping, then maps the 3D texture representation onto the 
object surface. For pre-texturing a model there are three possible methods for this stage; object 
normal, object centred and intermediate surface normal. These methods are illustrated graphically 
in Figure 2.12. A fourth method, called reflected ray, is also available, but this is only suitable for 
run-time allocation or pre-processing of a static scene. The O-Mapping is a function of type: 
 

T’(xi,yi,zi) � O(x,y,z)   (Eq. 2.7) 
 

 
 
 

Figure 2.12 – The three ‘static’ O-Mapping methods 
 
 
2.4.2 Lapped Textures 
 
In their paper, Lengyel et al. adopted the lapped textures method for specifying their texture co-
ordinates. This method, developed by Praun, Finkelstein & Hoppe [13], continually applies 
segments of a given texture to a model, aligned along a user-defined ‘tangent field’, until the 
model is completely covered. The name derives from the property that many of these texture 
patches will be overlapped by new ones as the full texture allocation is constructed. 
 
An example of this is shown in Figure 2.13. The image on the left represents the tangent field on 
the model as specified by the user. The insert is the texture patch being applied, and the image to 
the right is the textured model. 

O-Mapping S-Mapping 

             Texture            Intermediate Surface               Mapping to Model 

 

Intermediate Surface 

   Model 

           
          Object Normal    Object Centroid               Intermediate Surface Normal 
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Figure 2.13 – Lapped textures 

(Used with permission from [13]) 

 
This method evidently results in a well scaled texture application, but with a large amount of 
discontinuity where the separate texture patches connect. This property was acceptable with 
Lengyel’s implementation as it was focused towards dense, straight fur, resulting in minimal 
disruption where the discontinuities exist. A solution to the discontinuity, provided by Praun et al, 
is to blend the texture patches together, but this requires a unique texture to be generated for every 
patch on the model. Unfortunately, this would remove the non-localisation of our type set textures, 
resulting in unacceptably large quantities in texture data.  
 
 
2.4.3 ABF + Overlay Grid Smoothing 
 
Angle Based Flattening (ABF) and Overlay Grid Smoothing are techniques developed by Sheffer 
and Sturler [14, 15]. This works on the theorem that for any smooth surface, there exists a 
mapping of that surface to a plane, which is conformal [16]. Based on this theory, this method 
approximates a mapping from a faceted surface (i.e. a polygon mesh) to a plane (Angle Based 
Flattening). Once both the mesh and texture are in a 2d domain, the texture can be easily mapped 
onto the 2d model, then transferred back to the 3d mesh to produce a continuous texturing. 
 
This stage is carried out by solving the ‘constrained minimization problem’, which when given 
the optimal angles within each polygon (�), flattens the mesh with minimal difference possible 
between the generated (�) and optimal angles. This is achieved by solving equation 2.8 with a 
Lagrange multiplier via Newton recursion, under the constraints indicated by equations 2.9, 2.10 
and 2.11. These constraints ensure that the flattened mesh maintains correct connectivity by 
ensuring each face is valid, edges have the same length against either adjoining polygon, and that 
all the edges around each vertex is valid respectively. 
 

minimal value of � �(� – � )2(� )-2 (Eq. 2.8) 
 

� + � + � – � = 0 (Eq. 2.9) 
 

� �  - 2� = 0 (Eq. 2.10) 
 

(� sin(�  ) / � sin(�  )) – 1 = 0 (Eq. 2.11) 
 

Where �   represents angle j in polygon i of �,  
�   represents angle j in polygon i of �, 

and �     is the angle at node k in polygon i of � 
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Once the mesh is flattened, a bounding grid representing the texture co-ordinate set is created. 
This grid is then warped, in a process called smoothing, by varying the length of each grid edge 
relative to change in local edge lengths in the flattened mesh. This results in a concentration of 
texture co-ordinates in areas of the original mesh that have undergone the greatest reduction in 
size. 
 
When the overlay grid is complete, texturing the object is achieved simply by mapping the texture 
co-ordinate from the grid onto the flattened mesh. The co-ordinate is then copied to the 
corresponding node in the original surface to give a regular and continuously textured surface. 
 

 
 

Figure 2.14 – ABF + Overlay Grid Smoothing example 
(Used with permission from [15]) 

 
 
This method produces very good results as illustrated in Figure 2.14, and is a fully automated 
process, unlike lapped texturing. There is only one major problem with this method in that only 
faceted surfaces are supported, not solid meshes. This is because external edges must be present 
for the mesh to be flattened (for example, it would be mathematically impossible to flatten a 
sphere unless you made a hole somewhere in its surface). 
 
 
2.4.4 Summary 
 
Due to the intention of modelling sparse and curly fur, the 
continuity of the texturing is an extremely important 
factor. This is to reduce the amount of half-hairs on 
discontinuous boundaries, as shown in Figure 2.15. 
Therefore the lapped textures method can be dismissed as 
it is the method that presents the highest probability of this 
occurring. 
 
 
Evidently, the quality of ABF/OGS texturing is by far the superior option, but the inability to 
texture full ‘solids’ must be considered. One possibility is to ‘flatten’ the mesh onto a sphere, 
rather than a plane. However, this would then present the problem of how to texture a sphere 
without anomalies, which is mathematically impossible. A viable solution would be to simply split 
the model in two halves, like a chocolate Easter egg, and texture either side individually. These 
could then be merged back together, but would have a discontinuous equator where the textures do 
not meet correctly. 
 
Considering this, the results from ABF and mapping via an intermediate surface would be similar 
in overall quality. Therefore the obvious choice is to use the intermediate surface approach as the 
mathematics involved are much less complex, and therefore more likely to lead to a robust 
implementation.  

 
  Original 3D Mesh       Flattened Mesh  Smoothed Overlay Grid           Mapped 3D Mesh 
 

 
Figure 2.15 – Fur anomalies from 

discontinuous texture mapping 
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2.5 Dynamics 
 
Dynamics on short fur is an unusual area.  All the papers available are concerned with grass (the 
simplest case) or long hair dynamics (the most complex case). In the few cases where short fur 
dynamics is present [17] no details are available as to how it has been implemented. Therefore, a 
method must be developed by adapting the techniques used in grass and long hair dynamics. 
  
 
2.5.1 Wind Vectors 
 
This method was originally implemented for use in modelling grass [18], but could be easily 
adapted to simulate fur dynamics. A wind vector, representing the resulting force of a global wind 
on a hair, is calculated for each vertex on the model by mapping the wind vector to the vertex 
‘true-normal’ plane. (The same principle as deriving the lighting normal, see Figure 2.5)  
 

Wv = W – (W�N)N (Eq. 2.12) 
where W is the global wind vector and N is the vertex normal. 

 
By ensuring each wind vector is normal to the vertex normal, the offset for each shell vertex can be 
calculated using simple trigonometry. When normalised, the wind vector and hair vector form a 2D 
quad into which a curve approximation can be drawn. (Shown in Figure 2.16) 
 

 
 

By sampling this curve, values can be 
obtained representing the distances the 
corresponding vertex for each shell 
should be moved along the hair and wind 
vectors. This results in a steady bending 
of hair along its full length in reaction to 
a defined force vector. Equation 2.13 
defines the hair vector factor, and 
Equation 2.14 defines the wind vector 
factor for these relocation values. 
 
As can be seen in the diagram, 
calculating the relocation values using 
this method preserves the hair length 
regardless of the direction and intensity 
of the force acting upon it. 

 
Figure 2.16 - Deriving new vertex positions 
using the hair normal, and a wind vector. 
 

Wf = � S•cos( I.�.i / 2.N ) (Eq. 2.13) 
 

Wf = � S•sin( I.�.i / 2.N ) (Eq. 2.14) 
 

where S is the distance between shells, I is the wind intensity, 
i is the current shell and N is the number of shell 
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The main problem with this method is that it only considers external wind, which is perfect for 
grass, but fur is susceptible to a much larger range of forces such as motion, momentum and 
gravity. There is also the problem that each polygon of fur will be animated as a whole with this 
method which, although efficient, may produce visibly unrealistic results when subjected to strong 
force 
 
 
2.5.2 Loosely Connected Particles 
 
This is a very recent method developed at the University of Tokyo [19] for long hair dynamics. A 
number of invisible particles are positioned randomly within the hair volume, and connected with 
‘dampened springs’. That is, each particle is set a rule that encourages it to remain within a certain 
range of its neighbouring particles.  
 
Each particle is then animated independently in relation to the forces acting upon it, relying on the 
springs to maintain the correlation between hair segments. If large forces are inflicted upon 
particles towards the top of the hierarchy, the springs will pull all lower particles into place, 
resulting in realistic swaying of hair. Also, in the event that the forces acting on the hair is less than 
the spring strength, the hair shall be forced back to its natural position. 
 
In the original work, the hair was then rendered by drawing billboards at each of the particles to 
build up a dense hair volume, but this could be used in the shells model if the particles were placed 
upon shell vertices. 
 
Whilst this method gives good, fully volumetric dynamics, the mathematics involved are quite 
intensive and would be quite expensive considering the number of particles required for an entire 
animal model. 
 
 
2.5.3 Summary 
 
Whilst the more evolved of the two methods, the loosely connected particles system was developed 
for use with billboards allowing the particles to be placed almost anywhere upon the model. If this 
method was adapted for the shells model, the particles could only be placed upon the vertices, 
removing the benefits of the ‘loose’ structure. Also, due to the length of the fur, each vertex would 
host no more than 2 particles, effectively reducing the accuracy of any output to that of the wind 
vectors model. 
 
Considering that both methods could, with a little work, produce equal quality results, it is sensible 
to go with the simplest method; in this case, the wind vectors method. It is important to note, 
however, that further work will need to be conducted to incorporate the full range of forces 
necessary to model dynamics on a moving furry animal. 
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Chapter 3: Analysis 
 
 
Now that a good understanding of the project area has been developed, consideration of the project 
details can be made, along with further development of techniques specific to this implementation. 
All methods in this chapter are original work unless defined otherwise. 
 
Section 3.1 reviews the project aims in more detail, which will form the basis of the evaluation 
later in the project. Section 3.2 recaps the most suitable methods from previous work, and suggests 
alterations to make them more focussed towards this particular project. Sections 3.3 and 3.4 then 
consider the key problems of hair types and dynamics. This is followed by plans for testing and 
evaluation in Sections 3.5 and 3.6, before Section 3.7 considers the tools that will be used in the 
project. 
 
 
3.1 Aims of the Project 
 
From initial ideas and research done, the following 4 categories of project aims have been defined.  
 
General Fur Objectives 
The primary aim of this project is to research, experiment, and present a method for rendering real-
time fur. Suitable consideration should be made for colouration and lighting to produce as realistic 
a representation as possible. The ability to comb and vary the length of hair should also be present, 
further increasing the realism by allowing natural fur patterns to be represented. The presence of 
whiskers and tufts should also be considered. 
 
Hair Type Specific Objectives 
The secondary focus of the project is the generation, combination and display of numerous fur 
types. The chosen methods must be flexible enough to model any combination of the following 
properties. 

• Natural or Synthetic fur 
• Dense or Fine fur 
• Thick or Thin hairs 
• Curly or Straight hairs 

An interpolation technique should also be implemented to generate realistic transitions between fur 
types on a single model. This project will not, however, deal with complex hair arrangements such 
as partings, swirls and cowlicks as this would require a major restructuring of the shells method. 
 
Dynamic Objectives 
The tertiary aim of the project is the implementation of realistic dynamics upon a furry model. The 
affect of gravity, motion and momentum should all be considered and rendered in a believable 
fashion. As this is the tertiary focus of the project, only the most common situations for furry 
creatures will be considered, such as gradual and sudden movement. Considerations of hair control 
(e.g. twitching whiskers), collisions and water interaction, for instance, would require a much more 
extensive physics engine and will therefore not be considered in this project. 
 
Efficiency Objectives 
Finally, the system should be efficient enough for interactive use. An absolute minimum of 15fps 
must be obtained for the project to be deemed a success, with an ideal target value of around 30fps 
rendering a 1000 polygon model on a machine with the following specification: 
 

• P4 2.6ghz (w/ HT) 
• 512MB RAM 

• ATi Radeon 9600XT 
• Resolution: 1024x768x32
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3.2 Key Methods 
 
First the general rendering methods will be considered, in relation to the General Fur objectives. 
Some consideration will also be given to the display of fur types in this section. 
 
 
3.2.1 Representation 
 
The key method behind the system will be the shells and fins approach as defined in the Literature 
Review. We shall now consider the finer details of this method for use in the system. 
 
Shells 
A test program was developed early on in the project to ensure the suitability of this method and 
test some theoretic aspects. It was found that using 16 shells produced sufficient quality images 
with relatively short fur, and will therefore be the default shell quantity. However, this should be 
determinable in case longer hair is required. Somewhat surprisingly, it was also found that 
increasing the shell count in excess of 32 shells results in a lower quality image, as the hairs start to 
look too solid and less fur-like. 
 
 
 
 

 
 
 
 
 

Figure 3.1 – Comparison of results using 8, 16 and 32 shells (from left to right) 
 
Initially, it was hoped that 3-dimensional textures could be used to represent the fur volume. This 
would allow the number of shells to vary dependant on length and distance from camera (LOD), as 
the shell texture could be referenced at any height. In the case of distinct 2D textures, the number 
of shells must remain constant to the number of textures generated, as information between these 
cross-sections cannot be generated on the fly. Unfortunately, it became obvious early on in the 
development of the project that referencing 3D textures takes far too long when linear (min/mag) 
blending is enabled. Therefore this implementation utilises 16 different 2D textures to represent the 
fur volume, and the number of shells must remain constant across each model regardless of the fur 
length. 
 
Early programming also found that the combing limitations are not as prominent as suggested in 
Lengyel’s paper when working with dense fur. This is due to other hairs being visible through the 
gaps between shells keeping the image full, if not a little fuzzy. Therefore the combing limitation 
will not be enforced as it would add unnecessary computing time. Ensuring the hair normals are in 
a suitable range will be the responsibility of the modeller, not the program, but extra care must be 
taken when working with sparse fur as the changes of gaps being filled by hairs further back in the 
pattern will be less lenient in these cases. 
 
The shells will be rendered from the bottom up as specified in Lengyel’s paper. An attempt was 
made to render them from top down to avoid overwriting, by utilising the ability to directly 
manipulate the Z-buffer. However, this produced horrible aliasing effects where ‘half-pixels’ were 
not drawn. This made the resulting image flicker unbearably whenever the model was moved. The 
top-down approach also resulted in only the tiniest of performance increases because graphics 
cards cannot, at this point in time, discard a fragment until the process of calculating it has fully 
completed. Thus, pixels at lower levels would still have their lighting, colour, etc. calculated before 
being discarded, even if it was known it was going to be discarded early on in the calculations. 
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Fins 
In their paper [7], Lengyel et al. placed fins between every shell and altered the alpha values to 
reduce the visibility of fins that point towards the camera. This is because such fins clearly stand 
out when viewed from near above (see figure 3.2) Early tests suggested this was unnecessary and 
that fins were only necessary on silhouettes edges (figure 3.3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2 – Limitation of fins viewing angle Figure 3.3 – Demonstration that fins only at 
silhouettes is suitable.

 
The benefit of doing this is that much fewer polygons have to be drawn, making the solution faster. 
Unfortunately, shortly into the development process it was realised that using only silhouette fins 
produced unwanted effects during animation; as the model was moved around, the fins could be 
seen changing state, creating popping affects around the silhouettes. 
 
To solve this, the alpha-fins method was reintroduced to fade the fins in gradually as they approach 
the silhouette. The fin culling was still performed to reduce the number of polygons, but with a 
greater leniency. The equation used to do this is an adaptation of the process used in cel shading, as 
is shown in equation 3.1 
 

If (N1.V)*(N2.V) < 0.3  then edge is a silhouette edge (Eq. 3.1) 
where N1 and N2 are face normals, and V is the view vector. 

 
The alpha values assigned to the fins will be calculated using the following equation so that they 
are fully opaque when tangential to the camera, and fully transparent at the angle at which they are 
disabled. 
 

Alpha = 3(N·V)  (Eq 3.2) 
Where N is the normal to the fin polygon, and V is the view vector 

 
As the fins are only a support method to the shells, and will generally be further back in the image, 
they shall be rendered first. Also, because they require blending (due to the inclusion of alpha) they 
will be sorted prior to rendering from furthest to nearest. 
 
 
3.2.2 Whiskers and Tufts 
 
A review of the length abilities of the shells/fins method identified the problem of whiskers and 
tufts. To solve this, the concept of ‘Rogue Hairs’ is introduced. A rogue hair is a collection of 8 
points in space connected by straight lines to generate a hair. The thickness of this line will be 
proportional to that of the fur type present at that vertex. Small tufts will be rendered by placing 
several rogue hairs at the same vertex, each with varying lengths.  
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Only the direction and length of the rogue hairs will be provided. The positioning of the hair points 
will then be calculated using the same method as present on the shells. Colour will be a defined 
value stored with the vertex and lighting will be done using the Kajira/Kay method (Equations 2.2 
and 2.4) 
 
Although these rogue hairs will be more expensive to render per-hair than those covered in a shell 
structure, the numbers will be considerably less, and the visual impact will be strong enough to 
warrant the extra cost. 
 
 
3.2.3 Colour 
 
Early tests have shown that the offset system produces good results over curly hair. The only 
problem with it is that each hair takes its colour from a single texture map which may contain very 
little variance in colour over some areas. To increase slight variations in hair colour, and thus 
enhancing the visual quality, the concept of hair variance is introduced. This is another map stored 
with the type set containing slight variations in colour, local to the fur texture. 
 
In addition to hair colouration, the inclusion of fine fur in this project means the skin will be 
visible in many cases and will therefore require a texture map itself. This will be stored and 
rendered on the base model. To increase realism, the lowest shell mask can be used to darken the 
points on the skin texture where hairs will be. This will give the impression of pores in the 
rendered image with only minimum processing cost. 
 
This introduces a problem, in that the colour map for the fur will be under a different texture space 
than the offset texture. This is due to the texture set being repeated many times across an object, 
whereas the colour mask must be a single, non-repeated texture. To resolve this problem, a 4-
element conversion vector can be pre-calculated for each polygon, and used to map between the 
two texture spaces.  
 
The first 2 elements of this vector would be the u and v displacement along the colour map for a 
single step along the u axis of the fur type maps. Likewise the second two elements would be the 
offset for each increment along the v axis. Whilst this would work, the extra data being sent to, and 
manipulated by, the GPU would greatly increase the render time. As it is very rare to have animals 
with sudden changes in fur colour it was decided this extra cost did not warrant the barely 
noticeable correction in fur colouration, so offset mapping is absent from our implementation. 
 
 
3.2.4 Lighting 
 
The lighting of fur in the project will be performed using the Kajira/Kay method (Equations 2.2 
and 2.4) in conjunction with normal maps to present realistic per pixel lighting.  There is, however, 
the problem of correct self-shadowing as raised in the review stage. The shadow mapping method 
would produce better results for this if its problems were solved, but it would be both inefficient 
and exhaustive to develop in respect to the time allowed for this project. 
 
Therefore, the proposed solution is an extension to the Banks approximation method, taking into 
consideration the angle of light and the density of the fur. That is, instead of shading from pure 
darkness to full brightness over the full length of the hair, this occurs between the root and a point 
along the hair where it has been calculated full light will be received. 
 
This point is calculated in a 2-step process. Firstly the lighting factor is calculated using: 
 

F = 1 – N.L  (Eq. 3.3) 
Where N is the hair normal and L is the light direction 
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This tells us how much light is reaching a hair as a full entity, with a value of 0 for no shadowing 
and 1 for a fully shadowed hair. This then needs to be converted in to a shadow factor dependant 
on the density, and current displacement along the hair. An assumption made is that for fully dense 
hair, the fur-over-fur shadow will reach 75% of the distance along the fur when tangential to the 
lighting direction. This will then decrease linearly for less dense fur to a degree of no fur-over-fur 
shading for a 0 density type. This gives us a final fur-over-fur shadowing equation of: 
 

S = ((4h/d) – 3F) / F  (Eq. 3.4) 
Where h is the displacement along the hair in range [0(root) – 1(tip)] 

And d is the density of the fur of range [0-1] 
 
 
The secondary objective of the shadowing model is to ensure that hairs facing away from the light 
source receive no lighting. This can be done by rendering full shadow along any hair segment 
where the dot product between the light and the hair direction is less than zero (i.e. facing away 
from the light) 
 
 

 

The fins will also contain a normal map for lighting and 
will use its vertical edges rather than the polygon normal 
to define the hair direction. This hair direction can then be 
interpolated across the face of the fin, and the lighting 
performed using the same equations as for the shells. 

 
Figure 3.4 – Obtaining the Hair vector for lighting fins 

 
 
3.3 The Hair Types Problem 
 
Due to the volumetric aspect of the shell layers, the type sets cannot be linearly interpolated as 
would be possible with singular 2D texture maps. Taking this approach with volumetric hair would 
result in hairs becoming increasingly transparent over distance rather than reducing in numbers and 
length, which is obviously wrong. Therefore, the constraint that a shell mask texel cannot be a 
halfway value (i.e. it must exist or not) is added. This section describes the approach taken to 
enable transitioning of fur types under this constraint. 
 
3.3.1 Hair Dominance 
 
Fur interpolation in the real world consists of two key features. Firstly, the quantity of each hair 
type reduces in number as it progresses into the ‘territory’ of the opposing type. The second 
phenomenon is that the length of the fur generally gets shorter as its numbers decrease. These 
concepts are illustrated in Figure 3.5. 
 

         
Figure 3.5 – Properties of realistic hair interpolation 

 
In order to simulate these transitions, the concept of Hair Dominance is introduced. Here, each hair 
is given a value that determines how far into the opposing fur ‘Territory’ it can continue to exist. 
By determining how far a hair is towards its overlap limit (the point where the most dominant hairs 
cease to exist), its length can also be shortened accordingly without the need for extra data.  

H0  H1 …..                                    ….. Hn 
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The hair dominance values will be represented by using a greyscale, 
rather than monochrome, image for the base shell mask. This will be 
referred to as the ‘dominance map’, containing element intensities 
between 0 (pure black) for no hair and 1 (pure white) for the most 
dominant hair. Storing this as a single base map ensures that a hair 
maintains the same dominance value along its length. 
 

Figure 3.6 – Example of a dominance map (top),  
and it’s ‘filled’ counterpart (bottom). 

 
 
3.3.2 Interpolation 
 
The interpolation itself will be a multi-pass texturing procedure, rendering a single fur type at a 
time. For each fur type an existence value (0 for existence and 1 otherwise) will be defined at each 
vertex and interpolated across the polygon. 
 
Then, for each pixel, the corresponding dominance map element is compared against the 
interpolated existence value. If the value obtained from the dominance map is greater than, or 
equal to, the existence value, then the pixel is deemed to exist, and shall be rendered. It should be 
clear to see that as the existence value increases (that is, the section being rendered gets closer to 
an opposing fur type) then the less dominant hairs will not get rendered, resulting in the thinning of 
hair. 
 
Whilst this correctly reduces the quantity of hairs away from the type area, it does not reduce the 
size. To do this, the shells must also be clipped based on their level and existence value, giving us 
the following formula for determining whether to draw a given pixel: 

 
If (Sc/St) <= 2 – ((2  - 2e) / d) then  render.  (Eq. 3.5) 

Where d is the dominance value from the dominance map, 
 e is the existence value interpolated from the vertices,  

Sc is the current shell layer and St is the total number of shells. 
 
Note that the right side of this equation is multiplied by 2 from the simplest interpolation case. This 
is to ensure that the most dominant hairs do not begin reducing in length and density until half way 
through the transition. This is to reduce the illusion of hair thinning during the transition due to 
neither hair type being at full length. 
  
This test is performed on every pixel of every shell to produce a fall-off as demonstrated on the 
next page in figure 3.7. This will then be completed for each fur type in turn to produce a full 
transitional render. 
 
Another problem to handle is the consideration that the separate passes for each hair type may 
generate different values for a single visible shell pixel. This problem is unavoidable with this 
multi-pass method. An initial thought was to take the average of the generated pixels as an 
approximation of sub-pixel geometry, but this proved un-necessary and costly. Therefore the 
algorithm will simply overwrite any existing pixel with a newly generated one, provided it passes a 
less-than-or-equal-to Z-buffer depth test (GL_LEQUAL). 
 
A final point to note is that transitions to bald areas can be defined with this method by simply 
failing to define a fur type for the adjoining polygons. 
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Figure 3.7 – An example of the affect of existence and dominance maps over a fading fur type. 

 
 
3.3.3 Texture Generation 
 
An adaptation of the particles approach by Lengyel et al [7] will be used to generate textures for 
the project. The technique for modelling the fur with particles will remain unchanged, but the 
conversion to texture maps needs reviewing so as to produce the required dominance and normal 
maps.  
 
The dominance values will be created at the same time as the hairs by a random number generator. 
All values for dominance will be between 1 and 0.5 to ensure that no hairs fade out too quickly. 
The normal maps will be generated by comparing the hair position on the current shell to that 
below it and obtaining the x/y shift. The z shift will be a defined constant as the spacing between 
the shells will always be equal. The generated vector must then be normalised before being stored 
in the texture. 
 
The particle paths will be defined by 4 sine curves, two for each variable axis, and a length value. 
Several other techniques have been tried, such as random directions weighted towards a central 
point, but the multiple sine waves produced the best results. Upper caps of 7 radians are set for the 
phase of these sine waves, with the magnitude being limited to 4 times the radius of the hair. In the 
case of a particle leaving the bounding box, it will be displaced by the box dimensions to re-enter 
correctly on the opposing side, ensuring correct tessellation of the texture. 
 
The final consideration for the particle properties is the thinning of the cross-sections towards the 
tip of the hairs. The particle size reduces as it progresses away from the skin using a derivative of 
the inverse function, obtained through experimentation. This function, and the resulting radius 
graph, is shown below. 
 

R = 1 – (1 / (5.4 – 4h))  (Eq. 3.6) 
Where h is the distance up the hair [0-1] between the base  

and the tip of that hair (not to the top of the bounding volume) 
 
 
 
 
 
 
 

Figure 3.8  - The hair width reduction graph 
 
To avoid generating fur patches where hairs pass through each other (as is very likely with a 
randomised method such as this), each particle’s path will not be added to the type set maps until it 
has successfully completed its lifecycle without causing collisions with an existing hair. If a 
collision is detected a new randomisation seed will be generated and the particle rerun. If no path is 
found within 20 tries, the system should abandon the hair and continue to the next one to avoid the 
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system from hanging when no remaining paths are possible. When a successful path has been 
completed the randomisation seed will be restored to that at which the particle began and it will be 
run ‘live’, writing its position, dominance and direction to the type sets every time a shell plane is 
crossed. 
 
The fin textures will be generated by sampling a small strip across this bounding box. Background 
reading suggests this should be approximated a quarter of the z range taken from the centre, but 
personal work found that only a tenth of the range was required. Any successful particle that starts 
in this range will have its full path mapped on to the 2D fin texture. The normal will also be 
written to the fin normal map with the same values as the shell map. This is because, even though 
the texture will be arranged differently to the shells, the normal will still point outwards from the 
model, not the polygon, so the normal map values taken from the shells will remain correct. 
 
 
3.3.4 Texture Application 
 
As stated earlier in the colouration subsection (3.2.3), the model will host 2 different texture 
domains; one for the repeating fur textures, and another for the colour maps. It was also specified 
that the fur texture should repeat continuously where possible, but with the highest priority being 
given to regular sized repetitions.  
 
The best approach for this was considered to be intermediate surface mapping. Having considered 
the options available in this technique, and through a little experimentation, it was found that a 
combination of Cube S-Mapping, and Intermediate Surface O-Mapping produced the best results. 
 
Each side of the cube map will be given texture co-ordinated from (0,0) to (x,x) where x is a 
multiple factor defined before the texture co-ordinates are allocated. This is to allow the fur to be 
scaled accurately to the model dependant on the scale of the model. 
 
The colour maps will be applied to the model as indicated in the incoming 3D model. This means 
that an artist can map a colour texture to the model using and method they see fit, as they would in 
the case of a normal model, and the system could apply the fur automatically with minimal user 
intervention. 
 
 
3.4 The Dynamics Problem 
 
It has already been identified that hair dynamics will be modelled using the Wind Vectors model 
[18]. Several downfalls have also been identified with this method that must be considered in 
detail. 
 
 
3.4.1 Defining the problem 
 
The wind vectors approach produces good effects given a single vector of force. However, for use 
with fur a number of additional forces must be considered. These are: 

• Gravity – A constant force along the vector [0,-1,0]. 
• Wind – The force of any weather affects on the fur. 
• Movement – The force of air resistance as the furry object moves through world space. 
• Momentum – The force of fur momentum as the model moves. 
• Hair Resistance – The force of the hair resisting any movement. 

These individual forces must be calculated and combined to produce a single ‘Bend’ force that will 
be used to perturb the fur shells. 
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To make the technique more flexible, the method detailed below is entirely self-contained so that 
the same results will be generated regardless of the underlying animation method for the base 
model. That is to say, the method represents a medium-level animation approach. 
 
 
3.4.2 Deriving the wind vectors 
 
To calculate the wind vector for each vertex we must first calculate the individual forces that are 
acting on this point. Each force will be represented as a 3-dimensional vector with the same 
direction and magnitude of the force. The physics equations in this section are taken from [20]. 
 
Gravity vector 
This is the downwards force on each hair, the magnitude of which is calculated using the 
Newtonian weight equation (Eq. 3.3), resulting in an overall force vector of [0, -W, 0]. This must 
be calculated for every vertex as the fur mass will not be constant across the whole model in most 
cases. 
 

W = mg  (Eq. 3.7) 
where m is the mass of the hair (defined at each vertex), 

 and g is a global constant representing the force of gravity. 
 
 
External wind vector 
This environmental condition can take any direction or magnitude and will be controlled by an 
environment routine in the system. This is assumed to originate from an infinitely distant point, 
resulting in an equal force upon every vertex on the model. Therefore, to improve efficiency this 
should only be calculated once every time the environmental condition changes. 
 
Movement wind vector 
This is defined by the direction and speed of the vertex movement in world space. Using the 
distance over time equation for defining speed we can determine the movement of the vertex. This 
is then inverted to get the opposing wind resistance vector. 
 

Mv = -x(Vb – Va) / t  (Eq. 3.8) 
Where Vb is the current vertex position in world space, 

Va is the world-space position of the same vector the previous time it was rendered,  
t is the time elapsed since the previous render, and x is a positive constant. 

 
This must be calculated for every vertex on the model, as each individual vertex will be moving in 
a different direction in most cases. 
 
Momentum vector 
This is the most expensive force to calculate, but has the greatest affect on the realism of the fur 
motion. According to Newtons second law of motion, the momentum vector is calculated by 
multiplying the object mass by its acceleration: 
 

F = ma  (Eq. 3.9) 
Where m is the mass of an object and a is the acceleration of that object. 

 
The mass of the hair will be generated with the type set textures and be stored at each vertex, but 
we do not yet have its acceleration. This can be calculated using the average acceleration rule, 
defined as: 
 

A = �v / �t  (Eq. 3.10) 
Where �v is the difference in velocity and �t is the difference in time 
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The unknown is now the difference in velocity, which we can easily calculate by subtracting the 
current Movement vector from that generated in the previous frame. Combining these theories then 
gives us the final momentum-vector equation of: 
 

Lv = m(Mv – Mv-1) / t  (Eq. 3.11) 
Where m is the mass, Mv and Mv-1 are the current and previous movement vectors, 

and t is the time elapsed since the previous render. 
 
Combining the forces 
Once the individual forces have been calculated, they must be combined to produce a single 
resultant force for each vertex. This is done using the Parallelogram rule, which states that the 
resultant force between two vectors is equal to the sum of the vectors. Knowing this, the following 
simple equation can be used to combine the forces, giving us the overall force vector acting upon 
the hair. 
 

Fv = Gv + a(Ev) + b(Mv) + c(Lv)  (Eq. 3.12) 
Where a, b and c are constants, and Gv, Ev, Mv and Lv are the 

Gravitational, Environmental, Motion and Linear Momentum vectors respectively. 
 
The final stage in deriving the final wind vector for perturbing the shells is to introduce the hair 
resistance factor.  This is basically a delay factor so that the acting forces take effect over time 
rather than being instantaneous. The simplest method to do this is to simply combine the current 
acting force with the final force value from the previous frame as follows 
 

FFv = a(Fv) + b(Fv-1)  (Eq. 3.13) 
Where a and b are constants in range [0-1] such that a + b = 1 

 
 
3.4.3 Perturbing the Geometry 
 
Unfortunately, the graphics card I am developing this system for (Radeon 9600XT) does not 
support recursion in calculating the vertex position unless the number of iterations can be 
identified prior to the calculation occurring (in which case the recursion can be in-lined). This 
results in the chosen method for perturbing the hair using a summation of trigonometric equations 
unfeasible with the hardware available. 
 
A solution to this problem is to approximate the perfect curve with a directly referable algebraic 
equation. The first step is to approximate the end point of the fur in relation to a given force. By 
plotting a graph of the results given with the summation method defined in the literature review, 
the following equations were developed for this purpose: 
 

Wx = 0.861986f – 0.176676f
2  (Eq. 3.14) 

Hx = 1 – 0.04743f – 0.36726f
2  (Eq. 3.15) 

Where f is the force magnitude 
 
Now that an end point in obtained, and the start point in known 
inherently, it is possible to approximate any point along the hair 
using a Quadratic blending function (Eq 3.16). Experimentation 
with this method has found that the ideal position for Pc is half 
way along the hair vector, as illustrated in figure 3.9. 
 
The comparison between this method, and the traditional method 
is illustrated in figure 3.10 below. There is some minor 
difference in the spacing, but overall the result is sufficiently 
accurate for use. 

Figure 3.9- Approximating the bend factor 
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Q(u) = P0(1-u)

2 + P1u
2 + Pc2u(1-u)  (Eq. 3.16) 

Where u is the distance [0-1] along the curve 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.10 – Comparison between the approximated(left) and original(right) bend functions.. 
 
 
The only remaining problem is that the wind vectors 
technique was developed using a shells only method. In order 
to fully implement this technique into the project, 
considerations on how to render the bending of fins must be 
made. The obvious solution to this is to split each fin into 
horizontal segments with one sub-fin between each shell 
layer (illustrated). Fortunately, all the vertices required to do 
this will have already been calculated in rendering the shells. 
By buffering these vertex positions on the graphics card it 
should be possible to render all the sub fins required at 
minimal extra cost. 
 
 
 
3.5 Testing Plan 
 
The development of the system is to be carried out in three key stages, each a superset of the last. 
In chronological order, these are: 
 

• The Basic Model stage – Implementing the base system upon which the more advanced 
techniques will be built upon. 

• The Hair Type stage – Concerned with mapping several hair types onto a single model 
• The Dynamics stage – The final step is to incorporate the dynamics system. 

 
As each stage builds upon the code of the previous one, testing will be on ongoing procedure with 
thorough testing at the end of each stage to ensure stability. When all three stages have been 
completed, a final stage of testing will be performed to ensure all aspects of the system work 
together correctly, prior to a demonstration being coded for the end of project Poster Session. 
 
Any auxiliary programs will be thoroughly tested independently of the fur renderer. Due to the 
nature of the project, it is difficult to define any functional testing in the traditional sense, as most 
output is graphical rather than numerical. The testing will consist mainly of testing the robustness 
of methods on a variety of models under a time-critical viewpoint. 
 
 
 
 

Figure 3.11 – Illustration of sub-fins 
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3.6 Evaluation Plan 
 
To determine the overall success at the end of the project, a thorough evaluation is to be conducted. 
This will consist of the following four sections. 
 
Aims Achievement Evaluation 
Firstly, a personal evaluation of the project’s ability to achieve each of the objectives set out in the 
General Fur objectives at the beginning of this chapter. The dynamics will also be considered in 
this section, evaluating its accuracy and its affect on the realism of the system. 
 
Type Set Evaluation 
In this section, the ability to generate different fur types will be tested. This will consist of 
obtaining a number of close-up images of various fur types and trying to emulate them within the 
system. This will highlight both the quality of fur representation, and indicate any fur types which 
cannot be simulated. 
  
Overall Evaluation 
This will be an overall review of the method. A full model will be developed in an attempt to 
accurately represent a furry creature. 
 
Technique Review & Comparison 
Finally, once the technique has been evaluated as a singular entity, a comparison with existing real-
time systems currently on the market will be considered. These systems will be 

• The ATi demo for the shells method, which will compare the base technique with the 
extensions that have been imposed during this project. 

• Black & White 2 for a comparison with an alternative method. This game implements fur 
via the polygon strips approach described in the Literature Review section of this paper. 

 
 
3.7 Tools 
 
This section considers the tools used to develop the system. 
 
 
3.7.1 Programming Language and API’s 
 
The programming language used in the project is C++ due to the speed of computation available 
compared to other OO-Languages (such as Java). It is also the standard language for the field of 
3D Graphics and Video Games providing a good basis for later expansion. 
 
To make use of 3D graphics card features, a 3D API was adopted. The choices for this were SGI’s 
OpenGL or Microsoft’s DirectX. For this project, OpenGL was adopted as it has slightly more 
support for vendor-specific card extensions, and its functional structure makes it somewhat easier 
to use. Unfortunately, the base functionality of OpenGL is less advanced than that of DirectX, but 
with the large range of extensions available in the OpenGL community the differences between the 
two are minimal. 
 
The project makes use of the GLFW and GLee expansions for OpenGL. The first provides a 
framework to simplify interfacing with the operating system. This makes functionality of 
windowing routines and I/O considerably easier, and has multi-platform support, allowing the 
project to be easily ported at a later date if necessary. The second, GLee, is an extension wrapper 
that allows all OpenGL expansions to be included with just a few lines of code. 
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3.7.2 Shader Language 
 
As this project is heavily focussed on real-time rendering, the use of a shader language is deemed 
necessary. This allows the graphics card functions to be reprogrammed, allowing more of the 
rendering calculations to be performed on the graphics card to free up the CPU for more 
application specific tasks. 
 
All third and fourth generation graphic cards (GeForce3 onwards) have two programmable 
pipeline stages. The first is concerned with the position, colour and lighting properties of vertices, 
and is called the Vertex Shader. The second, the Fragment Shader, is responsible for the final 
output colour and Z-buffer depth of each fragment (a fragment being a potential on-screen pixel). 
Many of the techniques presented in this chapter could therefore be calculated on the graphics card 
itself, freeing up the CPU to concentrate on other operations. 
 
Traditionally, these shaders would be programmed in low-level assembly code. Whilst very 
versatile, this would be a long and complicated process. In 2002, NVIDIA released Cg, a high-
level language similar to C for shader programming. This is the approach taken within this project. 
 
As well as being simpler to code, Cg’s high-level stance has many advantages, such as support for 
arrays, structures, looping, conditional branching and function calls. All common data structures 
and mathematical functions are also included, with 3D specific functions, such as calculating the 
reflection vector for specular lighting, possible with one hugely efficient instruction (reflect). 
[21] Cg’s structure also allows for multi-API and multi-platform support by its range of parsers, 
compilers, and the CgFX file structure. Because this program has been developed primarily for 
fourth generation ATi cards, the CgFX structure has not been used. However, inclusion of this as a 
later extension could easily be considered. 
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Chapter 4: FurMak 
 
 
The final system developed during this project consists of two programs. The first, FurMak, is a 
pre-processor that generates fur textures, and converts .obj files into a format used for displaying 
the fur. The second program, FurGLe, is a combined render/editor for the furry objects. The 
following two chapters consider the design and implementation of these two programs, and discuss 
the findings made in the development process. 
 
In this chapter, we concentrate on the pre-processor. Section 4.1 discusses the layout of the 
program. Sections 4.2 and 4.3 then discuss the generation and output of data regarding texture 
maps and co-ordinates respectively. 
 
 
4.1 FurMak 
 
FurMak itself has two main purposes. Firstly, it must generate the type set textures for both the fins 
and shells of the model. As earlier specified, multiple fur types should be present on any given 
model. A decision has been made through careful consideration of animals that a total of 4 fur 
types will suffice, one of which must be baldness. This can be quantified by considering a rabbit or 
hare. The three custom fur types would be a fairly dense coat for the body, an equally dense, but 
thinner and curlier hair for the bushy tail, and a less prominent hair type for the inner ears. A bald 
option must be provided because every single animal has areas without any fur, even if it’s only 
the eyeballs. 
 
As indicated in the Analysis stage, each type set will contain: 

• 16 Dominance/Variance maps for the Shells 
• 16 Normal maps for the Shells 
• 1 Dominance/Variance map for the Fins 
• 1 Normal map for the Fins 
• A colour map for altering the fur colour 

 
The second purpose of FurMak is to convert a given 3D model into a format that contains 
information regarding the fur volume as well as the basic mesh. As part of this process, a second 
set of texture co-ordinates must to generated, concerned with the application of the fur set maps. 
Although direction and length values cannot be generated automatically, default values should be 
created to ensure the resulting file format can be used to save the models once these values have 
been set. 
 
The overall program flow is as indicated in Figure 4.1 
 
 
 
 
 
 
 
 
 

Figure 4.1 – FurMak program flow 
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4.2 Texture Generation 
 
For this implementation, a texture size of 256x256 for the shells, and 256x64 for fins has been 
adopted. This is considerably larger than you would expect to see in a practical implementation of 
this method, but for an experimental program we have the available memory to be a little more 
elaborate. 
 
As earlier specified, the fur will be constructed a hair at a time, before the data is converted into 
data maps. This is done as follows: 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4.2 – Fur texture construction 
 
 
4.2.1 Data Structures 
 
The internal representation for the fur generation is as shown below (Figure 4.3) Note that not all 
variables and methods are listed here, only those that are necessary to understand how the program 
works. 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3 – Data structures used for 
generating fur textures. 

 
 
It was decided that the output would be of a custom type collecting all the fur type textures into a 
single file, as saving each individual texture as separate image files would become highly 
confusing when managing file resources. The .fts (FurGLe Type Set) file-type was generated to 
serve this purpose and is organised as shown on the following page… 
 
 
 

Hair 
Shellify() 
 Int shellsX[16] 
Int shellsY[16] 
Int shellsR[16] 
float dominance 
float variance 
float length 
 

FurMak 
drawCircle(Hair h, int r) 
addHair(Hair h) 
checkHair(Hair src. Hair dst) 
 GLubyte shellDom[256][256][3] 
GLubyte shellNorm[256][256][3] 
GLubyte finDom[64][256][3] 
GLubyte finNorm[64][256][3] 
vector<Hair> acceptedHairs; 
float dens 
float wgt 

Create hair 
particle and 

run. 

User inputs 
fur properties 

Check for 
collisions. 
Add if OK 

Draw hairs to 
each shell at 
intersections 

Re-run 
particles for 
fin texture 

Repeat until density constraint is satisfied 

 
Save to File 

Repeat for each fur type 
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• Innermost Dominance map, stored as an array of chars read in row-major order 
o [variance][dominance][alpha] 
 

…Repeated for each shell layer… 
 

• Outermost Dominance map 
• Fin Dominance map, stored as an array of chars read in row-major order 

o [variance][dominance][alpha] 
• Single float value representing the overall fur density (for use in the shadowing algorithm) 
• Single float value representing the weight of the fur type (for use in the dynamics 

algorithm) 
 
As this structure is constant for any successful generation, each component in the file does not 
need to be separated, so the data is simply serialized into the file. 
 
Normal maps were also to be included in this file, each occurring after the corresponding 
dominance map. However, difficulties were encountered both in the transferring and rendering of 
the normal maps, and they were excluded as the project neared its end. Most of the code remains 
and is well commented for the possibility of extension. 
 
 
4.2.2 Generating Hair Data 
 
For each fur type to be created, the user supplies three property inputs – Density, Thickness and 
Curliness. The thickness and density values are first used to calculate the number of hairs to be 
rendered (thickness is required as a patch of dense thick hair will contain less hairs than a patch of 
dense fine hair). This is achieved by using the following equation. 
 

hairCount = d * mh * (1 –  (t * 0.7))  (Eq. 4.1) 
where d is the fur density (0-1), t is the fur thickness (0-1) and mh is the maximum possible 

number of hairs for any given input (defaulted at 1500) 
 
Hairs are then repeatedly generated up to this quantity, each taking its defining values as indicated 
in the following table. Note that the two magnitude pairs are calculated differently. The purpose of 
this is to increase the random curvature of fur, producing more realistic results. 
  
Length:  random number in range [0.0 - 0.5] 
Breadth: supplied thickness value [0-1] * maximum radius (6 texels) 
Dominance:  increases with each hair from 0.2 for first, to 1.0 for the final hair generated 
Variance: random number in range [0.0 – 0.8] 
Position:  random x/y co-ordinates in range [0.0 – 1.0] 
 

Phase1:  random x/y values in range [4 – 7.141 radians] 
Phase2:  random x/y values in range [2 – 5.141 radians] 
Magnitude 1:  (+/-) random x/y values in range[0.0 – 1.0] * supplied curliness value * radius 
Magnitude 2: (+/-) supplied curliness value * radius – random x/y values in range[0.0 – 1.0] 

 

Table 4.1 – Data generated for each hair 
 
Once all the input data for the hair is specified, the shellify() method is called to factorise this raw 
data into an arrays containing the x /y co-ordinates and radius for that hair at each shell. The code 
for this is shown in figure 4.4. The only problem to note here is that to maintain tessellation of the 
texture, any hair protruding from the edge of the bounding volume must re-enter from the 
opposite side. This is easily done by checking the co-ordinate against the bounding box and 
offsetting the location accordingly.  
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  void Hair::shellify() { 
    for(int l=0; l < LAYERS; l++) { 
      double sl = (double)l / (double)LAYERS; 
      shellsX[l] = x + (int)((xm * sin(xp * sl)) + (xm2 * sin(xp2 * sl))); 
      shellsY[l] = y + (int)((ym * sin(yp * sl)) + (ym2 * sin(yp2 * sl))); 
      float factor = ((float)1 / length) * (float)l; 
      float rad; 
      if (factor > LAYERS) { 
        rad = 0.0f; 
      } else { 
        rad = 1.0f - (1 / (5.4f - (4 * (factor / (float)LAYERS)))); 
      } 
      shellsR[l] = rad * r; 
    } 
  } 
 

Figure 4.4 – The shellify() method 
 
When a hair has been ‘shellified’, it is checked against each of the accepted hairs in turn for any 
collisions. This is simply performed by ensuring that the Euclidian distance between any two hairs 
is greater than the sum of the hair radii. Again, the tessellation of the texture can cause a problem 
here, allowing hairs to be accepted incorrectly as illustrated in Figure 4.5 
 
To resolve this, the bounding area is split into 4 quadrants 
(indicated in the diagram). If the two comparing hairs are on 
opposite sides of a separating line, the position of the hair is 
temporarily offset by the box dimension in the according 
direction. E.g. in the case of Figure 4.5, H1 and H2 are on 
opposing sides of the Y separation, so H2 will be positioned 
at (H2.x – box dimension, H2.y) for the duration of the 
collision test. 
 

Figure 4.5 – Correct collision detection 
 
The check is made for both the original position and the offset position. If a hair encounters no 
collisions it is added to the acceptedHairs vector in the FurMak class. In the event of a failure 
the hair is regenerated up to a maximum of 100 times before it is thrown away, allowing the 
program to continue.  
 
 
4.2.3 Converting Hair Data into Texture Maps 
 
Once all the hairs have been specified, and checked, the data is converted into byte arrays for 
OpenGL to use as a texture format. We shall consider how this is done for the two different texture 
categories. 
 
Shells 
This is done by ‘drawing’ filling circles for each hair on each shell in turn. The shellify() method 
has already defined the positions and radius of each circle, and the dominance and alpha values are 
stored in the hair structures, so this process is manifestly evident. 
 
Once variance and dominance were implemented it became clear that there was a problem with 
mip-mapping the shell textures. This was due to the large amounts of empty data surrounding each 
hair resulting in lower levels of the texture containing considerably smaller values than intended. 
To resolve this problem, each texel takes the variance and dominance values of the closest hair via 
a naïve 1-NN search algorithm. Alpha values remain unaltered to preserve the fur pattern. 
 
Fins 
For the fins only the hairs that start within the central 6% of the bounding box are used. To draw 
these hairs, the shellify procedure is performed to a higher frequency, referencing the location and 
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radius of each hair over 64 planes in the bounding box. These are then used for constructing each 
line of the fin texture. The code for this is illustrated below. 
 
  for(unsigned int currentHair = 0; currentHair < acceptedHairs.size(); currentHair++) { 
    if(acceptedHairs[currentHair].shellsX[0] > 120 &&  
                                          acceptedHairs[currentHair].shellsX[0] < 135) { 
      for (int cyrp = 0; cyrp < FUR_HEIGHT; cyrp++) { 
        double sl = (double)cyrp/(double)FUR_HEIGHT; 
        int cxrp = acceptedHairs[currentHair].shellsY[0] 
                   + (int)((acceptedHairs[currentHair].ym 
                   * sin(acceptedHairs[currentHair].yp * sl)) 
                   + (acceptedHairs[currentHair].ym2 
                   * sin(acceptedHairs[currentHair].yp2 * sl))); 
        float factor = (1.0f / acceptedHairs[currentHair].length) * (float)cyrp; 
        float rad; 
        if (factor > FUR_HEIGHT) { 
          rad = 0.0f; 
        } else { 
          rad = (1.0f - (1 / (5.4f - (4 * (factor / (float)FUR_HEIGHT))))) 
                 * acceptedHairs[currentHair].shellsR[0]; 
          for(int xdisp = (int)-rad; xdisp < (int)rad; xdisp++) { 
            int newx = cxrp + xdisp; 
            if (newx > DIMENSION) newx -= DIMENSION; 
            if (newx < 0) newx += DIMENSION; 
            finDomvar[cyrp][newx][0] = acceptedHairs[currentHair].shellsY[0] 
                                       - (cxrp + xdisp); 
            finDomvar[cyrp][newx][1] = (int)(acceptedHairs[currentHair].dominance 
                                       * 255.0f); 
            finDomvar[cyrp][newx][2] = 255; 
          } 
        } 
      } 
    } 
  } 

 
Figure 4.6 – Fin texture creation 

 
4.2.4 Testing 
 
The texture generator was tested with a range of inputs to ensure correct operation. The results are 
shown below. Note that due to the naïve approach taken by the ‘filling’ algorithm, the full 
texturing method takes considerably longer. The time taken is extensive, but the results are 
accurate and time is not a critical issue for an offline process. However, if the generator was to be 
further extended this would seriously need optimising. 
 
The only fault found with the results is that thickness values below 0.3 result in an absence of fur 
as the radius calculated for each hair is zero. However, the fur generated is correct in all other 
cases, so this is not a major problem provided any developer using the system is aware of this 
limitation. 
 
Density Thickness Curliness Time taken Results 

0 0 0 0.659 seconds No texture generated 
0.3 0.8 0.5 0.806 seconds Suitable texture generated  
0.8 0.2 0.2 1.987 seconds Suitable texture generated 
1 1 1 13 seconds Suitable texture generated 

Table 4.2 – Fast texturing test results 
 
Density Thickness Curliness Time taken Results 

0 0 0 0.67 seconds No texture generated 
0.3 0.8 0.5 1 min, 7 sec Suitable texture generated  
0.8 0.2 0.2 6 min, 18 sec Suitable texture generated 
1 1 1 1 min, 31 sec Suitable texture generated 

Table 4.3 – Complete texturing test results 
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4.3 Model Conversion & Texture Co-Ordinates 
 
The second function of FurMak is the generation of a secondary texture set for the application of 
the fur textures. This is done in the following four stages. Loading and saving objects is considered 
generic, so only the two central stages are discussed here. 
 
 
 
 
 

Figure 4.7 – The four stages of model conversion 
 
 
4.3.1 Data Structures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.8 – FurMak model data structure 
 
The data structure for the model is as shown above. The fTexCoOrd has two co-ordinates stored 
with it. x/y are the colour co-ordinates, and tx/ty are the fur co-ordinates. tf is a marker used to 
identify which face of the cube map that particular co-ordinate was obtained from. This is used for 
ensuring correlation across the texture domain. 
 
The incoming object is a traditional .obj file with vertex, face and texture co-ordinate entries. The 
normals are computed in the file loader so are not required in the .obj file itself. The object 
represented must be a triangular mesh, and all referencing in the file must be direct, not relative, 
for the file to be accepted. After conversion a new file type is needed to store the extra derivative. 
Therefore the .fo (FurGLe Obj) file format is introduced with the following format. 
 
Vertices are listed as follows. All values are floats except fur_type, which is an integer. 
    v   x_position  y_position  z_position  x_normal  y_normal  z_normal  length  fur_type 
 
This is then followed by the list of texture co-ordinates in the following format. Note that both 
texture spaces are stored together to make loading and saving much easier. 
    t  colour_x  colour_y  fur_x  fur_y 
 
Finally, the polygons themselves are stored exactly as with .obj files, except with the preface ‘p’ - 
This is to help instantly distinguish between .obj and .fo format when files are being manually 
inspected. The vertex and texture references are again direct, not relative. 
    p   v1 / t1   v2 / t2   v3 / t3 

fObject 
 
vector<fPolygon> polyList 
vector<fTexCoOrd> texList 
vector<fVertex> vertexList 

fPolygon 
 
fVertex *vertices[3] 
fTexCoOrd *texCoOrds[3] 
Vector3d normal 

fTexCoOrd 
 
float x 
float y 
float tx 
float ty 
float tf 

fVertex 
 
Vector3d position 
Vector3d normal 
vector<fPolygon*> polygons 
float furLength 
char furType 

Load 
Object 

Define Tex. 
Co-ordinates 

Correlation 
Corrections 

Save 
Object 

Vector3d 
set(float x, float y, float z) 
Vector3d cross(Vector3d op) 
float dot(Vector3d op) 
float magnitude() 
Vector3d matrixMul 

(double matrix[16]) 
float magnitude() 

float x 
float y 
float z 
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4.3.2 Vertex mapping System Structure 
 
The only user input to the vertex mapper is a pre-formatted .obj file, and a floating-point number 
which represents the scale factor, defining how often the fur texture repeats along the model. This 
recursion factor is dependant on the maximum dimensions of the model, which are obtained by 
iterating through all the vertices and updating the minDim and maxDim global variables. 
 
As described earlier, cube mapping is used to apply the texture co-ordinates. The first stage in 
achieving this is to find the cube face against which a given vertex will be referenced. This is 
attained by using a ray-plane intersection test with each of the cube faces; the ray being cast from 
the vertex position along the vertex normal.  
 
Ray-plane intersection is detected with equation 4.2 [22]. If the ray does intersect with the plane, a 
number, representing the distance from where the ray starts (in this case the vertex) and the plane, 
is returned. The cube surface most relative to a given vertex will be that which produces the 
smallest result from this calculation. 
 

t = -(P0·N + d) / (V·N)   (Eq 4.2) 
P = P0 + tV  (Eq. 4.3) 

Where P0 is the origin of the ray, N is the normal to the plane, 
d is the distance to the plane, and V is the direction vector of the ray 

 
Once the cube face is selected, the texture co-ordinate can be obtained by finding the position on 
the face at which the intersection occurs. This is easily done by multiplying the result from the 
previous solution by the vertex normal and adding this to the vertex position (Eq 4.3). This cube 
co-ordinate is them converted to the model texture space by Eq 4.4. The code for the vertex 
mapping is shown below in figure 4.9 
 

T = ((T0 - minDim) / (maxDim - minDim)) * sfact  (Eq. 4.4) 
Where T0 is the cube map location derived from Eq 4.?,  

and sfact is the scalar factor defined by the user. 
 
 
  vector<fPolygon>::iterator poly = furryObj->polyList.begin(); 
  while(poly != furryObj->polyList.end()) { 
    for(int vert = 0; vert <3; vert++) { 
      bool found = false; 
      Vector3d bestMatch(10000.0f, 10000.0f, 10000.0f); 
      int bestFace; 
         
      if(poly->vertices[vert]->normal.x > 0.0f) { 
        Vector3d ip = checkCubeIntersect(poly->vertices[vert]->position,  
                               poly->vertices[vert]->normal, Vector3d(-1.0f, 0.0f, 0.0f)); 
        if(ip.magnitude() < bestMatch.magnitude()) { 
          bestMatch = ip; bestFace = 0; 
        } 
      } else if(poly->vertices[vert]->normal.x < 0.0f) { 
        Vector3d ip = checkCubeIntersect(poly->vertices[vert]->position,  
                                poly->vertices[vert]->normal, Vector3d(1.0f, 0.0f, 0.0f)); 
        if(ip.magnitude() < bestMatch.magnitude()) { 
          bestMatch = ip; bestFace = 1; 
        } 
      } 
      // Process repeated for y and z axis planes 
      float xpos; 
      float ypos; 
      intSurfNormTex(bestFace, &(*poly), vert, xpos, ypos); 
      poly->texCoOrds[vert]->tx = ((xpos - minDim) / (maxDim - minDim)) * sfact; 
      poly->texCoOrds[vert]->ty = ((ypos - minDim) / (maxDim - minDim)) * sfact; 
      poly->texCoOrds[vert]->tf = bestFace; 
    } 
  } 
 

Figure 4.9 – Code for generating texture maps 
Note: checkCubeIntersect performs equations 4.2 and 4.3 to return the intersection point. 

intSurfNormTex performs Eq. 4.4 returning the resulting co-ordinate in xpos/ypos reference parameters. 
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4.3.3 Ensuring correlation 
 
The only short coming of this method is the anomalies which occur when the referenced texture co-
ordinates on a single polygon come from different faces of the bounding box. This results in 
incorrect texturing as shown in Figure 4.11. 
 
The traditional method when performing cube mapping is to identify where on the polygon the 
cube face changes occur, and split the model polygon into several sub-polygons so that each only 
references a single face of the cube map. In this instance, this process is unnecessary as the cube 
map textures do not match up (as they would on an environment map for example) so we can get 
away with simply mapping the existing polygon to a single cube map face without worrying about 
the joins. 
 
To select which face the polygon maps to, the dot product between the polygon normal and each of 
the cube face normals is calculated. The largest result from the 6 faces indicates the face to be used 
for mapping that polygon. The mapping then occurs as in the previous subsection. The improved 
mapping is shown in Figure 4.12 for comparison. 
 
There is however one other problem that is caused here as more fTexCoOrd’s are being added to 
the system. If these were simply added to the vector there is a high probability the memory location 
of the vector will change, destroying the pointer references that the model relies on. To work round 
this, a secondary fTexCoOrd array is included to store these new entries, to which the polygons 
point instead of the vector. As this will be a static array, there is no danger of the addresses 
changing during a single execution. The correction code is shown below: 
 
 
  if ((poly->texCoOrds[0]->tf == poly->texCoOrds[1]->tf) &&  
      (poly->texCoOrds[1]->tf == poly->texCoOrds[2]->tf)) { 
     //All ok 
  } else { 
    Vector3d bestMatch(10000.0f, 10000.0f, 10000.0f); 
    int bestFace; 
    // Best face searching removed for conciseness 
 
    float xpos, ypos; 
 
    fTexCoOrd newTexCoOrd = fTexCoOrd(); 
    newTexCoOrd.tf = bestFace; 
         
    for(int vert = 0; vert < 3; vert++) { 
      if(poly->texCoOrds[vert]->tf != bestFace) { 
        intSurfNormTex(bestFace, &(*poly), vert, xpos, ypos); 
        newTexCoOrd.x = poly->texCoOrds[vert]->x; 
        newTexCoOrd.y = poly->texCoOrds[vert]->y; 
        newTexCoOrd.tx = ((xpos - minDim) / (maxDim - minDim)) * sfct; 
        newTexCoOrd.ty = ((ypos - minDim) / (maxDim - minDim)) * sfact; 
        newTexCoOrds[newTexCounter] = newTexCoOrd; 
        poly->texCoOrds[vert] = &newTexCoOrds[newTexCounter]; 
        newTexCounter++; 
      } 
    } 
  } 
  

Figure 4.10 – Texture co-ordinate correction code 
 
When saving the .fo file, these are then written after the vector, with the first element of the 
secondary array being the ‘vector.size()+1’th texture entry. The references in the polygon 
data is also saved in this manner. Therefore, once the file is saved, there is no indication a second 
array was used, and the resulting file can be loaded into a single vector next time it is opened. 
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4.3.4 Testing 
 
To ensure correctness and stability of the method, the texture allocation was tested using a 
simple 2-dimensional checkerboard pattern on a variety of different models. An example 
of this is the textured ‘capsule’ as shown above in figure 4.12. The table below shows the 
accuracy, and computation time of four other models. 
 

Model Name Polygons Time Taken Texture Application 
Sphere.obj 180 0.686ms Perfect 
Torus.obj 432 1.652ms Perfect 
Knot.obj 2,000 7.63ms Some minor misallocations, 

but barely noticeable. 
Rabbit.obj 1,506 5.827ms  Again, some extremely 

minor misallocations 
Table 4.4 – Testing texture application on various models 

 
 

Figure 4.11 – Textured capsule showing 
 cube-face anomalies 

Figure 4.12 – Corrected texture allocation 
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Chapter 5: FurGLe 
 
 
Once the necessary files have been created by FurMak, it is FurGLe’s role to display the furry 
model, and allow the user to vary details of the fur, such as type, length and direction. This chapter 
looks at how this is done. Firstly, Section 5.1 considers the underlying structure of the program, 
giving an insight into the relationship between the different components. Section 5.2 then 
considers the main program loop, and how the scene is rendered. The GPU-side functionality is 
then described in Section 5.3. Finally, Section 5.4 describes the approach taken for user interaction 
with the program. 
 
 
5.1 System Design 
 
The general structure of the program is as shown in Figure 5.1. This is a simple overview of the 
link between the different components that should provide enough information for the system to be 
understood. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.1 – The structure of FurGLe 

Main 
RenderScene() 

Camera *mainCam 
Interface *currentGUI 
fObject *furryObj 
fTexSet *textures[3] 
CgControl *cgControl 

FurMak 
loadTextures 
        (fTexSet *tex, string file) 

 

fTexSet 
 
GLuint shellDom[16] 
GLuint shellNorm[16] 
GLuint finDom 
GLuint finNorm 
float dnsity 
float weight 

CgControl 
cgSetMatrix() 
cgSetCamera(float x, float y,  
                       float z) 
cgSetDisplacement(float x) 
cgActivateShaders(int set,  
                     fTexSet *furTex) 
cgDisableShaders() 

 

Camera 
Rotate(int x, int y) 
Spin(int x) 
Zoom(int x) 
toCamera() 

Vector3d cameraPos 
Vector3d cameraDir 

Interface(s) 
See Section 5.4 for 

details on Interfaces 

 

fObject 
genShellList(int &listName,  
                      int furType) 
updateFinVisibility(Camera *c) 
genFinList(int &listName,  
                   int furType) 

Vector<fPolygon> polyList 
Vector<fEdge> edgeList 
Vector<fTexCoOrd> texList 
Vector<fVertex> vertexList 
Vector<fWhisker> whiskerList 

fWhisker 
 
fVertex *position 
float length 

fPolygon 
 
fVertex *vertices[3] 
fTexCoOrd *texCoOrds[3] 
Vector3d normal 

fVertex 
updateForce() 

Vector3d position 
Vector3d normal 
Vector3d worldPos 
Vector3d force 
Vector<fPolygon*> polygons 
float furLength 
char furType 

fTexCoOrd 
 
float x 
float y 
float tx 
float ty 

fEdge 
 
fVertex *vertices[2] 
fTexCoOrd *texCoOrds[2] 
fPolygon *polygons[2] 
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5.2 Fur Rendering 
 
When FurGLe is started, the model file and all necessary textures are loaded, a window is created, 
OpenGL and Cg contexts are created, and the Control interface is initiated. These are all trivial 
processes and are not described in too much detail in this chapter. Once these processes are 
complete, control is passed to the main loop. The stages of the main loop are shown in Figure 5.2 
and the code is shown in Figure 5.3. 
 
 
 
 
 
 

Figure 5.2 – The main program loop 
 
Setting the camera position is simply done by calling the toCamera() method of the relevant 
camera object. Note that the updated camera position must also be sent to the Cg controller so the 
shaders can be informed of the state change. The details of the remaining 3 stages are described in 
the following 3 subsections. 
 
 
  while(glfwGetWindowParam(GLFW_OPENED)) { 
    glClearColor(1.0f, 1.0f, 1.0f, 1.0f); 
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 
    glLoadIdentity(); 
 
    mainCam->toCamera(); 
    cgControl->cgSetCamera(mainCam->cameraPos.x, mainCam->cameraPos.y,  
                           mainCam->cameraPos.z); 
 
    vector<fVertex>::iterator v = furryObj->vertexList.begin(); 
    v->trace = true; 
    while(v != furryObj->vertexList.end()) { 
      if (v->furType < 4) v->updateForce(); 
      v++; 
    } 
 
    furryObj->updateFinVisibility(mainCam); 
    for(int typeRec=0; typeRec < 3; typeRec++) { 
      if (renderFins) furryObj->genFinList(finList[typeRec], typeRec+1); 
      if (renderFur) furryObj->genShellList(shellList[typeRec], typeRec+1); 
    } 
 
    GLfloat light_position[] = {10.0f, 10.0f, 10.0f, 1.0f}; 
    glLightfv(GL_LIGHT0, GL_POSITION, light_position); 
    renderScene(); 
             
    currentGUI->displayGUI(); 
    glfwSwapBuffers(); 
  } 
 

Figure 5.3 – Main Program Loop code 
 
Note that fur type 4 is bald and is therefore not rendered. This also means it does not require a 
wind vector to be calculated for any of its vertices. 
 
 
5.2.1 Updating the forces 
  
The wind vector for each vertex is calculated as described in the Analysis (3.4.2). The only 
complication involved is in the conversion between spaces. The vertex positions are in local space, 
which need to be converted to view space for the movement vector to be obtained. Once this is 
done, the resulting movement must be converted back to local space to represent the movement 
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relative to the vertex. Similarly, the gravity vector, which must be defined in view space, must also 
be converted to local space. The code for generating the wind vector for a given vertex is shown in 
Figure 5.4 below. 
 
 
  void fVertex::updateForce() { 
    extern fTexSet *textures[3]; 
    GLdouble tmvMat[16]; 
    glGetDoublev(GL_TRANSPOSE_MODELVIEW_MATRIX, tmvMat); 
    GLdouble mvMat[16]; 
    glGetDoublev(GL_MODELVIEW_MATRIX, mvMat); 
    
    Vector3d gravity = Vector3d(0.0f,  
                 -(0.45f + (textures[furType-1]->weight/4.0f)), 0.0f).matrixMul(tmvMat); 
    extern Vector3d globalWind; 
    Vector3d wind = globalWind.matrixMul(tmvMat); 
 
    Vector3d currentPos = Vector3d(position.x, position.y, position.z).matrixMul(mvMat); 
    Vector3d movementTemp = ((worldPos - currentPos) * 1.5f).matrixMul(tmvMat); 
    Vector3d movement = movementTemp - (normal * (movementTemp.dot(normal))); 
    movement.normalise(); 
    movement = movement * movementTemp.magnitude(); 
    Vector3d momentum = (movement - force); 
 
    worldPos = currentPos; 
    Vector3d fullActiveForce = (gravity + wind + movement + momentum); 
    force = (force * 0.85f) + (fullActiveForce * 0.15f); 
  } 

 
Figure 5.4 – Wind Vector calculation code. 

 
 
5.2.2 Constructing the Display Lists 
 
Early on in the project, it was found that it was possible to create a single display list when the 
program starts, and continually draw it with different Cg parameters to render the fur. 
Unfortunately, when dynamics was introduced this single list approach no longer worked. This is 
because the dynamics routine changed the data being sent with the vertices every frame (namely 
the wind vectors) and display lists cannot be changed. Before dynamics were included, the various 
shells could be attained by changing the GPU program states, which does not affect the raw data, 
only the way in which the results are calculated. Now we must recreate the lists every time the 
vertex data changes, 
 
It was intended that this rendering approach would be replaced with a considerably more efficient 
vertex arrays method once all the separate features were implemented. This did not happen due to 
time constraints, but the display list approach is still faster than immediate mode as each generated 
list will be run at least 16 times (once for each shell) in its lifetime. 
 
Each fur type will have its own display list to allow for multi-pass rendering over hair transitions. 
The shell list for each fur type is constructed by cycling through the polygons in the model and 
adding those that contain at least one vertex of the current hair type. When a polygon is added, data 
is also included to identify the existence at that point (i.e. 1 if fur present, 0 otherwise). This 
process is repeated for each fur type. The texture co-ordinates from the objects fTexCoOrd list are 
used for the vertices. 
 
The fin display lists are slightly more complicated, and require selection to be performed based on 
the equations introduced in Section 3.2.1. The successful fins are then sorted into reverse order so 
the fins towards the far clip plane are rendered first. This is required because the introduction of 
the alpha fins method means that some fins may be semi-transparent and therefore inherently 
require everything behind them, including other fins, to be rendered first.  
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  void fObject::updateFinVisibility(Camera *camera) { 
    silhouetteEdges.clear(); 
    for(unsigned int x=0; x < edgeList.size(); x++) { 
      Vector3d eyeVector = (((edgeList[x].vertices[0]->position +  
                (edgeList[x].vertices[0]->normal * edgeList[x].vertices[0]->furLength)) +   
                (edgeList[x].vertices[1]->position + (edgeList[x].vertices[1]->normal *  
                 edgeList[x].vertices[1]->furLength))) / 2.0f) - camera->cameraPos; 
      edgePair newEdge; 
      newEdge.edge = &edgeList[x]; 
      newEdge.distance = eyeVector.magnitude(); 
      eyeVector.normalise(); 
 
      float sil = ((edgeList[x].polygons[0]->normal).dot(eyeVector) *  
                   (edgeList[x].polygons[1]->normal).dot(eyeVector)); 
      if (sil < 0.3f) silhouetteEdges.push_back(newEdge); 
    }  
    sort( silhouetteEdges.begin( ), silhouetteEdges.end( ), PairComp ); 
  } 
 

Figure 5.5 – Fin Selection method 
 
For each fur type, this sorted list is then iterated to create the display list containing existence 
values as with the shells list creation. Each accepted fin is drawn to the list as two triangles, rather 
than a quad as originally intended. This is due to the introduction of combing making it highly 
likely that any given fin is not planar. 
 
The texture co-ordinates for the fins are again 
more difficult to attain than with the shells 
method, as there is no pre-define texture space for 
edges of the model. The reason for this is that it’s 
mathematically impossible, as illustrated in figure 
5.6. There is no possible way for the texture to be 
drawn from A�C that will match the position 
attained via A�B�C over the edges of a model.  
 
The y co-ordinate for the texture fins is simply the displacement value of the current shell, from 0 
at the base to 1 at the tip. The x value is more difficult to define. The approach taken here is to 
allocate the starting co-ordinate a value taken to be Euclidean distance of vertex texture co-
ordinates from the origin. This is to ensure all fins do not start with the same point in the texture, 
which would result in a noticeably repetitive rendering. The x co-ordinate for the other end of the 
fin is defined as the starting x co-ordinate plus to length of the edge at skin level. 
 
 
5.2.3 Rendering the Scene 
 
Once the display lists have been created, the scene can be rendered. First, the base skin is rendered 
with a specified TGA texture. This stage is done using plain OpenGL, so lighting and texturing 
needs to be enabled. Face culling is also enabled to prevent back facing polygons from being 
drawn. This making the rendering faster as it reduces the time spent calculating areas of the scene 
that are not visible. 
 
Next the fur is rendered onto the model. When rendering the fur, texturing and lighting will be 
disabled. This is because the shader programs will be overwriting the default OpenGL 
implementation for these processes. As the fur render will contain transparency, blending must be 
activated to allow incoming pixels to be ‘mixed’ with those in the buffer, based on their alpha 
values. If this was not activated, the outermost shell would overwrite everything, regardless of 
whether there were any hairs present or not. 
 
Finally, the z-buffer must be turned off for the fur. This is required as the interpolation method 
draws two polygons in exactly the same location, using different textures, to achieve hair 
transitions. It was defined earlier that this would be handled be setting the depth test to 

Figure 5.6 – Problems mapping the fins 

A 

B 

C 

6 � 8 
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GL_LEQUAL, but rounding errors still produced z-buffer artefacts. Therefore the depth test is 
disabled entirely while the fur is being rendered. 
 
The shells are then drawn from inner-most to outer-most by increasing the displacement value that 
the shader uses to set the offset position. At each ‘layer’, the fins are drawn first, followed by the 
shells. The reason for this is that the shells are the primary feature in the rendered image and the 
fins are only a secondary assistance feature which should support, not overwrite, the basic shell 
model. A final point to note here is that culling must be disabled when rendering the fins. This is 
because some back-facing fins must be rendered as they fade out. If they were to simply vanish as 
soon as they’d passed the silhouette, it would produce noticeable popping affects as they 
disappeared.  
 
 
  void renderScene() { 
    cgControl->cgSetMatrix(); 
 
    glEnable(GL_LIGHTING); 
    glEnable(GL_CULL_FACE); 
    GLfloat col2[] = {1.0f,1.0f,1.0f}; 
    glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, col2); 
    glEnable(GL_TEXTURE_2D); 
      glBindTexture(GL_TEXTURE_2D, skinTex); 
      if(renderSkin||editMode) glCallList(skinList); 
    glDisable(GL_TEXTURE_2D); 
    glDisable(GL_LIGHTING); 
 
    glEnable(GL_BLEND); 
    glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); 
    glDepthMask(GL_FALSE); 
 
    float col = 0.7f; 
    GLfloat col3[] = {col,col/2,0.0f,1.0f}; 
    glColor4fv(col3); 
    for(int type=0; type < 3; type++) { 
      for(float shell=0.0f; shell < 1.0f;) { 
        shell += 1.0f / SHELL_QUANTITY; 
        cgControl->cgSetDisplacement(shell); 
 
        //RENDER FINS 
        if(renderFins) { 
          glDisable(GL_CULL_FACE); 
            cgControl->cgActivateShaders(CG_FINS, textures[type]); 
            glCallList(finList[type]); 
          glEnable(GL_CULL_FACE); 
        } 
 
        //RENDER FUR 
        if(renderFur) { 
          cgControl->cgActivateShaders(CG_SHELLS, textures[type]); 
          glCallList(shellList[type]); 
        } 
      } 
    } 
    cgControl->cgDisableShaders(); 
    glDisable(GL_BLEND); 
    glDepthMask(GL_TRUE); 
  } 
 

 
Figure 5.7 – The scene rendering routine 
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5.3 Shaders 
 
The most important factor in this system is the shader programs. As can be seen from the previous 
section, the OpenGL code is concerned primarily with setting up the card status for the shaders to 
do all the detailed work. In this system the vertex programs will be responsible for calculating the 
correct offset position of each vertex, along with the lighting of the model, taking in to 
consideration the shadowing factor. The fragment program then identifies the existence of fur at 
each pixel and allocates it a colour (including the application of lighting and variance to the 
standard hair colour). 
  
The shaders are not pre-compiled in this project. Instead, they are compiled by FurGLe when the 
program starts. The reason for this is so the shaders can be compiled specifically for the card 
present on the machine in question, resulting in a more efficient solution. The loading and 
operating of the shaders is controlled by the CGControl class. 
 
The full listings of the Cg Shader Programs are included in Appendix C. 
 
 
5.3.1 Shell Vertex Shader 
 
We shall first consider the shell vertex shader. The input parameters to this program are: 
 
Float4 position : POSITION Local space location of the incoming vertex. Passed to shader via glVertex*. 
Float3 normal : NORMAL Vertex normal (hair direction). Passed to shader via glNormal*. 
Float3 texCoord : TEXCOORD0 x/y elements represent texture co-ordinate for fur set textures. Passed to shader via 

glMultiTex*. 
Float2 colCoord : TEXCOORD1 Co-ordinates of colour map. Passed to shader via glMultiTex*. 
Float3 tangent : TEXCOORD2 Tangent for the current vertex. This was included for per-pixel lighting, but is 

unused in the final version. Passed to shader via glMultiTex*. 
Float4 wind : TEXCOORD3 The wind vector for the vertex. x/y/z elements represent direction. w element 

indicates the length of the hair. Passed to shader via glMultiTex*. 
Uniform 4x4 modelViewProj The model-view-projection matrix 
Uniform float3 eyePosition The location of the camera in local space 
Uniform float3 lightColor The colour of the light in rgb format 
Uniform float3 lightPosition The location of the light source in local space 
Uniform float displacement The distance from the skin of the current shell, in range [0-1] 
Uniform float density The overall density factor of the fur type currently being rendered, in range [0-1] 

Table 5.1 – Input parameters for shell vertex program 
 
The uniform properties are set just once between the renderings of a fur type at a certain 
displacement. Any dynamic data, which varies every vertex, is packed into multi-texture co-
ordinates. This is because integrating variable transfers into existing OpenGL calls is considerably 
faster than making direct calls to the shader itself. The allocation of the uniform values is handled 
by the CGControl class. The light colour and position are constant throughout the program and 
are set at start-up when the shaders are compiled. Shell displacement and the projection matrix are 
set by calls to cgSetDisplacement and cgSetMatrix respectively and can be seen in the 
render code in figure 5.7. The density factor is specified every time the shader is activated as a 
change in shader program (from fin to shell rendering) always occurs when a new shell is started. 
The value this is to take is stored in the fTexSet structure that is passed to cgActiveShaders. 
 
The first job of the vertex shader is to calculate the world position of the vertex. This is done in 
two parts. First, the vertex position is offset in local space in regards to the displacement and wind 
vector values using the equations from Section 3.4.3. This resulting position must then be 
multiplied by the model-view-projection matrix to give the final screen space location. This 
process is shown in Figure 5.8 
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  //Get bend values 
  float3 localBend = IN.wind.xyz - (dot(IN.normal, IN.wind.xyz) * IN.normal); 
  float force = length(localBend); 
  if(force > 1.0) { 
    localBend = normalize(localBend); 
    force = 1.0; 
  } 
   
  //Calculate bend factors 
  float d2 = displacement * displacement; 
  float f2 = force * force; 
  float wf = (0.861986 * force) - (0.176676 * f2); 
  float hf = 1.0 - (0.04743 * force) - (0.36726 * f2); 
  hf = (hf * d2) + (displacement * (1 - displacement)); 
  wf = wf * d2; 
   
  //Set displacement 
  float4 nww; 
         nww.xyz = (IN.normal * hf * IN.wind.w) + (localBend * wf * IN.wind.w); 
         nww.w = 0.0; 
          
  //Set position, and texture co-ordinates 
  float4 PS = mul(modelViewProj, (IN.position + nww)); 
  OUT.oPos = PS; 

 
Figure 5.8 – The positional vertex shader code 

 
The other purpose of the vertex shader is to calculate the lighting. This is performed using the 
equations specified in Section 3.2.4. During the development of this process, it was found that 
pure anisotropic lighting produced unrealistic results where hairs pointing directly towards the 
light were rendered too dark. Therefore a small Lambertian diffuse component was added to the 
lighting function to simulate the reflective light these hairs would receive from those around them.  
 
Unfortunately, as has already been stated, per-pixel lighting was not completed within the 
deadline due to complications passing the normal data between programs and processors. If this 
was to be implemented, the ambient, specular and Lambertian diffuse components would still be 
calculated in the vertex shader, with just the anisotropic diffuse component being calculated in the 
fragment shader. This would be the best approach as it would greatly reduce the number of 
calculations performed, compared to that required for the full lighting model, and as the diffuse 
component is the strongest factor, the reduction in quality would be barely noticeable. 
 
Once the lighting has been calculated, the shadowing factor is derived as indicated in  
equation 3.4. A second shadowing function, representing the object-over fur shadowing 
component is also calculated using equation 5.1, shown below. Recall that the shadowing function 
is multiplied by the light intensity, so smaller shadow factors produce the greatest shadow. 
 

If L·N + 0.5 < 0.5 then 1 otherwise 0  (Eq. 5.1) 
Where L is the light vector and N is the hair direction 

 
The minimum value of the two shadowing factors is then taken to be the true shadow factor and 
the overall lighting value is calculated as shown in Figure 5.9. The position and lighting values, 
along with the texture co-ordinates that are un-used by the vertex program, are then passed out as 
TEXCOORD* values for interpolation between the polygon fragments by OpenGL. 
 
  //Shadow Components 
  float FoFSP = (1 - max(dot(IN.normal, L),0)); 
  float FoFS = clamp(((4 * (displacement / density)) - (3 * FoFSP))/ FoFSP, 0.0 +  
               (1.0 - density), 1.0); 
  float Shadow = min(FoFS, saturate(dot(L, IN.normal) + 0.5)); 
  
  OUT.oLight.w = Shadow; 
  OUT.oCol = ambient + (((diffuse * 0.35) + (ddiffuse * 0.15) + (specular * 0.3)) 
                     * lightColor * Shadow); 
 

Figure 5.9 Calculating the resultant lighting value 
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5.3.2 Shell Fragment Shaders 
 
Once the vertex program has defined the position and properties of the polygons, it is the 
fragment shaders job to render them. The input values to fragment shader are: 
 
Float4 texCoord : TEXCOORD0 x/y elements represent the texture co-ordinates of the fur type, z element is the 

existence value of fur at that point in range [0-1], and the w element is the current 
displacement in range [0-1]. All values specified by vertex shader 

Float2 colCoord : TEXCOORD1 The texture co-ordinate for this fragment on the colour map. Specified by VS 
Float3 color : TEXCOORD2 The resultant light value for the taking into consideration light colour and 

shadowing. Specified by the vertex shader 
Float4 lightDir : TEXCOORD3 This represents the light vector being passed to the fragment shader. This was 

included for per-pixel lighting but was never fully implemented. The fourth element 
was to store the shadow factor for application to the final diffuse component. 

Uniform sampler2D shellTex This is a pointer to the fur set texture that is to be used.  
Uniform sampler2D shellCol This is a pointer to the fur colour texture that is to be used. 
Uniform sampler2D shellNorm This is a pointer to the fur normal map that would have been used. 

Table 5.2 – Input parameters to the shell fragment program 
 
The texture samplers are specified in CGControl when the shader is activated. When the call to 
cgActivateShaders is made, the fTexSet of the current fur type is passed as a parameter. As 
CGControl already knows what displacement level is currently set, from an earlier call to 
cgsetDisplacement, it can select and bind the appropriate textures from the texture set as it 
activates the shader program itself. 
 
Although the fragment shader performs numerous techniques from the review and analysis stages, 
the final process is remarkably simple. First of all, the textures are referenced to obtain the 
dominance, variance, alpha and colour values of the current fragment. It would logically follow 
that the fragment is checked for existence at this point, but because of the architecture of current 
GPU’s this is not the most efficient approach. 
 
This is down to two reasons. Firstly, a fragment cannot be discarded until the program has finished 
running, so where you check for existence makes no difference to performance. Secondly, true 
branching is not supported, so all if statements are inlined. For example, the code… 
 

If (a) {B, C} else {D, E} 
 

…is converted to… 
 

If (a) then B 
If (a) then C 
If (!a) then D 
If (!a) then E 

 

…for implementation on the current GPU architectures. What this means in this case is that 
checking for existence at the beginning of the shader and only performing the calculations if a hair 
is present would result in the existence check being performed for every instruction in the program. 
Due to the length of the program at this point in time, the efficiency difference is only about 10%, 
but for a further enhanced version the improvements would be huge. 
 
Therefore, the shader first calculates the colour of the fragment under the presumption that a hair 
exists. This is achieved by taking the referenced colour from the input map and multiplying it by 
the variance and lighting values. The existence value is then calculated as defined in Eq. 3.2. 
 
Finally, the existence check is performed. Note that the alpha value is set to zero before the check 
to avoid an else branch from being inlined. If the fragment is part of a hair this alpha value is then 
changed to that in the fur set, which may or may not be a opaque value. The code for this shader is 
shown in figure 5.10 
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  struct appdata { 
    float4 texCoord : TEXCOORD0; 
    float2 colCoord : TEXCOORD1; 
    float3 color    : TEXCOORD2; 
    float4 lightDir : TEXCOORD3; 
  }; 
 
  void main(appdata IN, 
    uniform sampler2D shellTex, 
    uniform sampler2D shellCol, 
    uniform sampler2D shellNorm, 
    out float4 Color : COLOR)  
  { 
    float4 DomRef = tex2D(shellTex, IN.texCoord.xy); 
    float4 ColRef = tex2D(shellCol, IN.colCoord); 
    Color.xyz = ColRef.xyz * IN.color * DomRef.x; 
    Color.w = 0.0; 
    float exist = max(2.0 - (2.0 * ((1 - IN.texCoord.z) / DomRef.y)), 
                      0); 
    if(IN.texCoord.w <= exist) Color.w = DomRef.z; 
  } 

 
Figure 5.10 – The shell fragment program 

 
5.3.3 Other Shaders 
 
As the different components of this project utilise the same underlying techniques, the resulting 
shaders are very similar to the one just described. This section indicates the primary differences 
between them. 
 
Fins 
The fins shaders share the same placement, lighting and shadowing components as are found in the 
shells. There are however some differences to support the varied alignment of the polygons. 
 
In the vertex shader, only the x co-ordinates for the fur texture are provided. The y co-ordinate is 
derived from the current displacement value, and a vertical offset passed with the texture data. This 
offset is required to indicate the top and bottom of the current displacement, as unlike with the 
shells approach, the layers present with the fins have depth. 
 
The vertex shader also calculates the alpha value of the fin to eliminate the popping affect 
described earlier. This alpha value is then passed to the fragment shader in place of the 
displacement value. This can be done as the y texture co-ordinate will be a more accurate 
representation of the offset at this point than the uniform displacement value, so the displacement 
value would not be used if it was still sent. 
 
On the fragment side, the only differences present in the code are the multiplication of the final 
result by the alpha value generated by the vertex shader, and the use of the y texture co-ordinate as 
a height reference, rather than the displacement value passed across in the shells program. 
 
  
Whiskers 
The important thing to note about whiskers is that they are singular entities, drawn with 
infinitesimally thin lines.  As they have no volumetric area, they do not need a fragment shader as 
all the lighting and colouration is done in the vertex shader. 
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5.3.4 Testing 
 
Testing is a difficult operation with Cg programs as there is extremely limited feedback making it 
impossible to print out check variables. Therefore the majority of the testing was done by 
perception, and occasionally by outputting check variables via the colour channels of the pixel. 
This channelling approach proved extremely useful, but has limitations in that only an 
approximation of a given value can be obtained by viewing an on screen colour. 
 
To test the dynamics, force lines were rendered on the model showing the direction and magnitude 
of force. These are still visible in Edit Mode of the final product. This proved considerably useful, 
particularly when problems were encountered in swapping between spaces for the movement based 
calculations. 
 
 
5.4 User Interfaces 
 
FurGLe has 3 different user interfaces, each of which implements the general Interface class shown 
in Figure 5.11. Each of these interfaces are described below, and the screen layouts are shown in 
Figure 5.12 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.11 – Interface Classes 
 
 
 

        
Figure 5.12 – Interface screenshots 

 
 
 

Interface 
virtual displayGUI() 
virtual mouseKeyEvent 
           (int button, int action) 
virtual mousePosEvent 
           (int x, int y) 
virtual keyboardEvent 
           (int key, int action) 
 
int mouseX 
int mouseY 

ViewInterface 
(Interface methods) 
PrintFPS() 
 int mouseX 
int mousey 
bool spin 

EditInterface 
(Interface methods) 
findCurrentVertex() 
 
int mouseX 
int mousey 
fVertex *currentVertex 
 

WhiskerInterface 
(Interface methods) 
findCurrentVertex() 
 
int mouseX 
int mousey 
fVertex *currentVertex 
fWhisker *currentWhisker 
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5.4.1 View Mode 
 
This is the default user interface which is used to view the model. The control method is: 

• LMB + Drag - Rotates the model for alternate viewing angles 
• RMB + Drag - Zooms in and out of the model 
• LMB + LCTRL + Drag - Spin the model around the Z axis (Yaw) 
• B, S, F - Pressing these keys toggles visibility of the base model, shells and fins 

respectively. 
 
Boolean values are used to store the status of the mouse buttons, and movement is detected by 
comparing the current mouse position with the previous mouse position. Using these values the 
corresponding Camera class methods are called to reposition the viewing position. 
 
The separate visibility settings are achieved by altering the renderFur, renderFins and 
renderSkin flags in the Main program when the corresponding key press is detected. 
 
 
5.4.2 Edit Mode 
 
If the user holds down the E key, they will enter edit mode. This allows the length, direction and 
type of the fur to be altered at each vertex. The control system is: 

• LMB – Select vertex 
• LMB + Drag – Change fur direction 
• RMB + Drag – Vary length of fur 
• 1, 2, 3, 4 – Set’s fur type at current vertex.  

 
This mode depends heavily on being able to select a vertex in 3D space using selection on a 2D 
plane. To do this, gluUnProject is used to obtain 3D positions on the near and far planes of the 
view volume relative to the position on the screen. Note that to do this the screen y co-ordinate 
value must be inverted, as OpenGL’s y axis is opposite to that in Windows. 
  
Once the two points have been identified, a ray indicating the points in 3D space that could 
possibly be selected can be constructed by Eq. 5.2. By giving each vertex a spherical selection 
volume, potential vertices can be found via a ray-sphere intersection test via equation. 5.3 [23]. 
The closest successful vertex from this test will then be the selected vertex. At this point, a pointer 
to the vertex is obtained, making the alteration of the fur properties a trivial process. 
 
 

nearPos + i(farPos – nearPos)  (Eq. 5.2) 
 
 

a = i2 + j2 + k2 
b = 2i(x1 – l) + 2j(y1 – m) + 2k(z1 – n) 

c = l2 + m2 + n2 + x1
2 + y1

2 + z1
2 + 2(-lx1 – my1 – nz1) – r

2 

If  b2–4ac >= 0 then the ray and sphere intersect (Eq. 5.3) 
 

Where the ray starts at (x1, y1, z1) with direction (i, j, k) 
and the sphere has center at (l, m, n) with radius r 
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  extern fObject *furryObj; 
  float CHECK_RADIUS = 0.1f; 
 
  double px,py,pz; 
  double modelMatrix[16]; glGetDoublev(GL_MODELVIEW_MATRIX, modelMatrix); 
  double projMatrix[16]; glGetDoublev(GL_PROJECTION_MATRIX, projMatrix); 
  int viewport[16]; glGetIntegerv(GL_VIEWPORT, viewport); 
  int wx, wy; 
  glfwGetWindowSize(&wx, &wy); 
  int windowY = wy - mouseY; 
  gluUnProject(mouseX, windowY, 0.0, modelMatrix, projMatrix, viewport, &px, &py, &pz); 
  Vector3d nearPos = Vector3d((float)px, (float)py, (float)pz); 
  gluUnProject(mouseX, windowY, 1.0, modelMatrix, projMatrix, viewport, &px, &py, &pz); 
  Vector3d farPos = Vector3d((float)px, (float)py, (float)pz); 
  Vector3d ijk = farPos - nearPos; 
  float vertexDist = 10000.0f; 
 
  float a = (ijk.x * ijk.x) + (ijk.y * ijk.y) + (ijk.z * ijk.z); 
  float cf = (nearPos.x * nearPos.x) + (nearPos.y * nearPos.y) + (nearPos.z * nearPos.z); 
 
  vector<fVertex>::iterator vc = furryObj->vertexList.begin(); 
  while(vc != furryObj->vertexList.end()) { 
    float b = (2 * ijk.x * (nearPos.x - vc->position.x)) +  
              (2 * ijk.y * (nearPos.y - vc->position.y)) +  
              (2 * ijk.z * (nearPos.z - vc->position.z)); 
    float c = (vc->position.x * vc->position.x) + (vc->position.y * vc->position.y) +  
              (vc->position.z * vc->position.z) + cf + (2 * (0.0f - (vc->position.x *  
              nearPos.x) - (vc->position.y * nearPos.y) - (vc->position.z * nearPos.z))) -  
              (CHECK_RADIUS * CHECK_RADIUS); 
    float det = (b*b) - (4 * a * c); 
    if(det >= 0.0f) { 
      float newVertexDist = (vc->position - nearPos).magnitude(); 
      if (newVertexDist < vertexDist) { 
        currentVertex = &(*vc); 
        vertexDist = newVertexDist; 
      } 
    } 
    vc++; 
  } 
 

Figure 5.13 – Code for selecting a vertex. 
 

 
5.4.3 Whiskers Mode 
 
Whiskers mode is initiated when the W key is pressed. The appearance is the same as edit mode, 
but the controls are tailored towards the editing of whiskers. The controls are as follows: 

• LMB – Create/Remove whisker at current vertex 
• RMB + Drag – Increase/Decrease length of the whisker. 

 
The same method is used to identify the selected vertex as with the previous interface, when 
creating a whisker. Once the vertex is obtained, the list of whiskers currently in the system is 
checked to see if an entry exists that is linked to that vertex. If a whisker is found then it is 
removed from the whisker list, otherwise a new fWhisker instance is created relative to the 
selected vertex and added to the system. 
 
 
5.4.4 Testing 
 
The features of each interface were tested and tweaked accordingly during the development 
process. All functionality of the interfaces are now correct and easy to use. However, during more 
frequent use, whilst generating models for the next chapter, it was found that the program 
occasionally terminates abruptly during the vertex picking algorithm shown in Figure 5.11. It is 
unclear why this happens and all debugging attempts have failed to find any fault with the code. 
This problem is not a frequent occurrence, so is therefore not a major problem, but should be 
resolved if the system was to be extended for industrial or public use. 
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Chapter 6: Results and Evaluation 
 
 
This chapter considers the success of the project as a whole, and considers its potential for future 
development. This is done is several stages. First, Section 6.1 considers the individual 
requirements of the project, and the degree to which they have been achieved. Section 6.2 then 
evaluates the quality of textures generated for use in the system, comparing the types generated to 
their real-life counterparts, before Section 6.3 evaluates the system as a whole. Finally, the future 
potential for this technique is discussed in Section 6.4, before a summary of future work in Section 
6.5. 
 
 
6.1 Fur Rendering 
 
At the beginning of the analysis section, a number of objectives were set. This section considers 
the degree of success the individual parts of the system in regards to these objectives. 
 
6.1.1 Fur Features 
 
Shells 
The implementation of shells in this system is of a high standard, with minimal faults identified. 
The only negative point that is immediately apparent is the lack of support for LOD. 
Unfortunately, there is no obvious solution to this problem due to the manner in which the shell 
textures are saved in a static-sized array. 
 
The program itself uses 16 shells for rendering fur. This was judges as the best balance to produce 
reasonably efficient frame rates whilst maintaining a coherent image. Further experimentation has 
shown that the shell quantity can be dropped to 12 before the image begins to noticeably break 
apart. Therefore, it is feasible to suggest this as the ideal quantity for use in any marketable product 
that adopts the shells method.  
 
Overall, the shells approach has proven to be a very good base method for rendering fur. It is 
versatile enough to handle a range of situations and has huge potential for continual expansion. 
 
Fins 
The inclusion of fins has a considerable affect on the quality of silhouettes, as seen in Figure 6.1. 
Unfortunately, due to some unidentifiable errors in system the fin selection routine contains some 
margin of error, as is clear when the shells are deactivated. Some fins that should be rendered are 
absent from the final image, and some silhouettes near-parallel with the viewing direction and 
rendered, producing dark ‘spots’ as seen below. However, it is felt this is due to errors in the 
implementation, and not the method itself, so fins remain a worthy extension to the shells method. 
 
The main fin-based finding in this paper is that the alpha fins method is necessary to prevent 
popping, but need only be implemented over a small angle around the silhouettes.  
 
 
 
 
 
 
 
 
 

Figure 6.1 – Illustrations of fins in the final product 
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Length and combing 
Although both these method have a rather limited viable range, they add considerable realism to 
the overall result. There are no problems found with these functions in the system, nor where there 
any new findings. 
  
 
Lighting 
Even though per-pixel lighting was never fully implemented, the lighting model is very affective. 
During the course of the project, it was found that introducing a traditional diffuse component to 
the lighting equation improved the overall realism of the rendered image. This extension is 
necessary as it models the global reflection light that will be obtained from the surrounding hairs. 
  
Shadowing is implemented using an extension on Bank’s Approximation method. The results are of 
good quality, and are highly efficient. Admittedly, they are not as realistic as implementing the 
shadow mapping approach would have been, but the effect is still believable and considerably 
faster.  
 
 
Colouration 
Due to complications involved in swapping between texture domains, the ATi offset approach was 
excluded from this project. It was deemed too expensive to warrant slight visual quality increase, 
which tests performed thus far support. 
 

The concept of a variance map was also introduced to make 
slight variations to hair colour. The results from this prove to 
be very beneficial, as they make each individual hair easier to 
distinguish. Without this function, the fur looked very plain 
and flat, but the colour variations help to promote the 3D 
nature of the fur. 

 
Figure 6.2 – Hair colour variance  

 
 
 
6.1.2 Interpolation 
 
The interpolation method described in this paper works remarkably well. Several revisions were 
made to the classification algorithm (Eq. 3.2) before the results were legible, but the final 
implementation provided a very suitable model for this feature. There are problems where hairs of 
different types pass through each other, but as the Z-buffer is disabled whilst the shells are 
rendered, this does not produce any detrimental graphic effects. 
 
At the moment, a major limitation with this method is that each vertex can only be of one fur type. 
This means any transitions much occur over a single polygon from non-existence to full existence. 
This is a major limitation, as models will have to be specifically tailored to allow for realistic 
transitions. In some cases this may not even be possible. For example, there is no possible way 
under the current system to have an interpolation occurring over a curved surface. 
 
A future extension would be to relax this constraint allowing fur to change more gradually across 
large areas of the model. This would be a fairly easy task as the shaders would already be able to 
support this extension due to the multi-pass nature in which it is rendered. 
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Figure 6.3 – Fur type interpolation 
 
6.1.3 Dynamics 
 
The concept of hair dynamics has also been successfully introduced in this paper. The wind vector 
approach adopted for bending the hairs, has, after some modification for current GPU 
architectures, proven to be a suitable and reasonably efficient method for displacing the shell 
locations correctly. Figure 5.5 below proves this by showing the status of a furry sphere under 
different physical conditions. 
 
The current implementation does have one major downfall, in that physics model used to calculate 
the wind vectors is rather primitive. The task of calculating physics accurately, particularly for 
structures as complex as fur, is a very difficult process and was never intended to be the focus of 
this extension. However, now that the method is proven as valid, building a scientifically correct 
implementation of physical modelling is a logical extension, and would bring a great increase to 
the realism of the dynamics. 
 
 

Figure 6.4 – Dynamics in action 
 
Clockwise from above: 

• Static sphere 
• Anti-clockwise rotation 
• Strong wind blowing to west 
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6.2 Fur Generator 
 
In this section, the ability to generate different fur types is considered. A number of real fur images 
have been obtained and attempts have been made to replicate the fur in the system. The results are 
shown below. 
 
 
6.2.1 Results 
 
Fur Type Generation Test 1 – Rabbit Fur 

Thickness:0.45 

Density:0.75 

 

 
 

Curliness:0.4 

 

 
 

As illustrated above, rabbit fur can be quite accurately generated by FurMak. The only fault with 
this representation is that the full hair length cannot be replicated with just 16 shells. If the hairs 
are extended in length the correlation between the hair segments breaks up. However, unless the 
results are being directly referenced as they are here, the length difference would not be 
noticeable.  
 

 
 
 
Fur Type Generation Test 2 – Border Collie (Sheep-dog) Fur 

Thickness:0.45 

Density:1.0 

 

 
 

Curliness:1.0 

 

 

 

The generation of curly dog fur was less successful. In the real fur, large groups of hairs curl in a 
very similar direction producing well defined ‘rolls’ in the fur. FurMak does not support such hair 
groups, but the result is mimicked by changing the normals of the furry model. The main 
problem, however, that cannot be cheated is that the real fur curls back on itself. This cannot be 
done in this system, but may be possible by allowing the generation particles full freedom of 
movement along all 3 axis. 
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Fur Type Generation Text 3 – Chinchilla Fur 

Thickness:0.3 

Density:1.0 

 

 
 

Curliness:0.1 

 

 

 

A Chinchilla’s coat is possibly the perfect type of fur to show off the shells method. The 
extremely high quantity of hairs is easily modelled and can be displayed at equally fast speeds to 
any lower frequency fur, unlike the naïve or polygon strip approaches. The texture frequency on 
the model had to be increased to get the hair fine enough, but the overall result is extremely good. 
 

 
 
 
 
 
 
Fur Type Generation Text 4 – Synthetic Fur from Novelty Slippers 

Thickness: 0.8 

Density:1.0 

 

 
 

Curliness:0.45 

 

 
 

This thick nylon ‘fur’ is very difficult to replicate. A suitable representation has been achieved by 
using thick hairs, but in reality the fur type should consist of many smaller hairs woven together. 
This could be resolved by introducing a grouping property to future revisions of the fur generator. 
There are also a number of these thin threads that do not get bound to a group, adding to the 
fuzziness of the fur type which must also be represented. 
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Fur Type Generation Text 5 – Human Forearm 

Thickness:0.28 

Density:0.15 

 

 

Curliness:0.8 

 

 

 

The fine, spare hair is quite easy to model in this system, but unfortunately the combing required 
breaks the hair segments apart resulting in a dotted image than only barely resembles the intended 
fur type. There is nothing wrong with the generated textures, just a strong limitation on the 
combing abilities. 
 
If the 3-dimensional freedom of movement was implemented for the particles it could be possible 
to add another constraint to increase the lateral range of the particle so that a line, rather than a dot, 
could be made on the texture as the particle runs along the shell plane. This would increase the 
visual quality of long short hairs, but would add a directional element to the fur type, limiting the 
beneficial ‘use-anywhere’ property of the fur textures generated in this project. 
 

 
 
6.2.2 Evaluation 
 
As can be seen, the fur generator can reproduce most common fur types to a reasonable degree. 
There are a few instances where the fur type must be generalised to a simpler representation, but 
the results still appear valid unless studied closely. This shows that particle based generation is a 
suitable method for the creation of fur types, and is evidently far superior than the results that 
would have been obtained via the noise model. 
 
There are two downfalls of the fur generator that have been identified, that present the opportunity 
for further extension. Firstly, the particles could be extended to have 3-dimensional freedom of 
movement to allow for more elaborate curls. Secondly, a grouping function could be included to 
clump individual fur together. This would make it possible to model a wider range of synthetic furs 
and open the opportunity for non-standard fur types such as a sheep’s fleece and wet or matted fur. 
 
It is also evident from these images, and from figure 6.5 on the following page, that the 
intermediate cube surface approach to mapping the model with a secondary texture domain is a 
success. The fur patches are the same size throughout, and it is very difficult to see the joins caused 
by face changes in the texturing process. Both these problems still occur of course, and could be 
resolved using an applied ABF approach (2.4.3), but the anomalies are not considered evident 
enough to cause any problems or warrant any further development. 



   Real-Time Rendering of Fur :: Results  56 
 

 
56 

6.3 Overall System 
 
To test the system as a whole, the following model of the Stanford Bunny [24] was created. This 
incorporates all the features included in the system. 
 
There are 3 hair types present each with its own colour map, as well as a skin texture. The fur 
length varies across the body, being shorter around the head and longer on the tail, and is combed 
via the varying of normals to give a more realistic affect. 
 

 
Figure 6.5 – Stanford Bunny 

 
It is evident from this that all sections of the system 
work together suitably to produce high quality 
results. The frame rate for the above model generally 
varied between 15-25fps when run at a resolution of 
1280x960, depending on orientation and screen area 
of the model. The lowest frame rate attained was 
6fps, which was a result of zooming in on the tail 
hair transition (shown in Figure 6.6) In reality, this 
view would never be obtained, so the overall 
efficiency can be viewed as ‘real-time’. 
 

Figure 6.6 – Slowest attainable viewpoint 



   Real-Time Rendering of Fur :: Results  57 
 

 
57 

There are however some problems with the model in the previous section. Firstly, the rabbit does 
not look entirely realistic, but I feel that this is due to my inexperience with 3d modelling 
packages and drawing textures, and is not the fault of the system itself. The colouration textures 
used here are fairly simplistic resulting in a fairly plain looking model, and the mesh itself is not 
fully set up correctly as can be seen with the incorrect locations of the eye and tail fur transitions. 
Both of these problems could be resolved by a trained artist. 
 
Secondly, the silhouette features some anomalies, with some sections appearing to have 
considerably more hair than others. This is caused by the slight faults with the fin rendering 
indicated in section 6.1.1. In the full model, these are increasingly evident as the combed normals 
make the likelihood of miscalculation considerably higher. 
 
 
6.4 Usability 
 
It is clear from the results obtained over the last 7 pages that the shells and fins method produced 
good quality results. However, to be truly useful, the system must be efficiency enough to achieve 
30+ fps. 
 
Due to time restrictions on the project, the program has not been fully optimized, so falls short of 
this high target. As described in Section 5.2.2 of the last chapter, the model is stored in Display 
Lists that must be constantly updated. As each list is used at least 16 times this is still considerably 
faster than immediate mode would be. However, if the data structure was rearranged to work with 
buffered array lists instead, the transfer of data to the GPU would be noticeably faster. 
 
Another possibility for increasing efficiency is to offload some of the work back to the CPU, such 
as offsetting the shell vertices. At the moment, the bottleneck of the system is in the vertex shader 
and moving these calculations could improve speed slightly, although it would result in less 
processor time available for any system in which the fur would be implemented. 
 
Although the bottleneck is in the vertex shader, the pixel shader is not far behind. Although the 
program lengths are extremely short for fragment shaders, the number of fragments being 
calculated can be many times the resolution of the screen (due to the shells overlaying one 
another). This is obviously a major problem that would need considering when adding extra detail 
to the system, such as the full implementation of per-pixel lighting. 
  
If the vertex-based efficiency issues were resolved, this method of rendering fur would certainly be 
a viable option for implementing in real systems, such as games. The project is GPU heavy so the 
extra processing required on the CPU to run a full system would not affect the rendering. Also, 
furry objects in games would cover a much smaller area than a presentation based project such as 
this, so the fragment shaders could be more elaborate without causing speed issues. 
 
 
6.4.1 Comparison to existing methods 
 
Now that the technique has been evaluated, it is compared with other implementations of real-time 
fur available today. 
 
ATi Chimp 
As a demonstration for their 9800 family of cards, ATi developed the Chimp demo [25]. This is 
the system frequently referred to during this paper [2]. As it is an in house demo it is extremely 
efficient, which proves the huge potential for the shells method if tailored specifically to a 
particular chipset. The visual result also shows how good a model can look when engineered by 
professional artists. 
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The ATi approach implements per-pixel lighting 
which is noticeable improvement. The offset 
approach for colouration is not apparent from the 
demo, which supports my theory to exclude it.  
 
Features not present on the ATi Chimp are fur 
dynamics and multiple fur type transitioning. It is 
also unclear what shadowing method, if any, is 
adopted.  
 
Overall, this demo proves the potential efficiency of 
the method, supports my choice to exclude offset 
mapping, and suggests my extensions of fur type 
interpolation and dynamics to be worthy 
advancements. 
 

Figure 6.7 – ATi Chimp Demo 
Permission pending from [25] 
 

 
Black & White 2 
This upcoming game from Lionhead Studios [26] 
includes a rather impressive fur renderer using the 
polygon strips approach that was discarded in the 
literature review.  
 
The results are extremely good, both by visual quality 
and efficiency. The strips approach allows for much 
longer hair than the shells method, and the visual quality 
around the silhouettes of the model are considerably 
better. Dynamics are also included, and are of very high 
quality. 
 
The down-side to the strips approach is the messier, 
more cartoon-like appearance. This is because the strips 
have to be arranged rather irregularly to create a wide 
viewing scope, making combing difficult to achieve. The 
shorter fur also has a slightly less impressive appearance 
than with the shells model. 
 
It would be interesting to see if the improved silhouettes 
of this method could replace the fins present with the 
shells approach to produce a hybrid technique. This 
would then have the benefits of both methods.  
 

Figure 6.8 – Black & White 2 ‘Good Ape’ Model 
Used with permission from [??] 

 
6.4.2 Future Potential 
 
Although this method could be used in modern day systems, the method would need further work, 
primarily on efficiency issues, to meet the strict graphical needs of the industry. At this point in 
time programmable pipeline architectures are still quite primitive making further enhancement 
difficult. However, the power of GPU’s are increasing at incredible rates, making an enhanced 
version of this method a very viable option for any projects in the early stages of development. 
Here we consider the future of the method in relation to upcoming technological advancements. 
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This summer will be seeing the introduction of DirectX 9.0c and its implementation of Shader 
model 3.0. This will introduce full branching, increasing the power of conditional calculations and 
making recursion possible. There is also an increase in the number of instructions available (in 
excess of 65,000) and a large increase in available memory registers [27]. These features give 
potential for more complex features, such as the shadow mapping technique (2.2.4), to be 
implemented for future hardware. 
 
The throughput of the shaders is also increased with the potential for the multi-texture pixel 
shaders to be up to twice as fast as they are now. This means that within the next 6 months there 
will be cards on the market that could run the shells approach at competitive rates, making it 
increasing viable to be a key method in future interactive products. 
 
The most exciting news however is a vertex shader process called instancing. Details are a little 
vague on this feature at this point of time, but the concept is that a whole model can be drawn in 
several places at the same time with small programmable variations. Depending how this is 
implemented, it may be possible to calculate all the shell vertices on a model in a single pass. 
 
 
6.5 Future Work 
 
To summarise, the shells method is an extremely promising method for rendering realt time fur, 
but there is still many areas for extension or improvement. The further work that would be of the 
greatest benefit are considered to be as follows: 
 

• Improved fur generator – Support for 3-dimensional freedom of movement for the hair 
particles, and a clumping factor to better replicate synthetic and matted fur, would greatly 
increase the range of fur types that could be implemented by this system. 

 
• Improved efficiency – The method could be made much more efficient through the use of 

buffered vertex arrays and enhanced shader programs. With the 3.0 shader model it may 
even be possible to render all shells in a single pass. 

 
• Replace Fins with Polygon Strips – The polygon strip approach in Black & White 2 

produces very good results. It would be interesting to experiment mixing the two methods 
by replacing the faulty fin routine with a more constraint-free polygon strip approach 

 
• Per-Pixel Lighting – Due to time constraints, per-pixel lighting was not achieved, but 

much of the code remains for correction/extension. Attaining this would produce a great 
increase in visual realism. 

 
• Improved Dynamics – The dynamics process in this project proves that hair animation is 

possible with the fins technique. However, the results are unrealistic and could be 
improved with a more accurate physics engine. 
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Chapter 7: Conclusions 
 
The primary project aim was to find a method for rendering short fur in real-time. The shells and 
fins approach by Lengyel et al [7] was adopted for this purpose, and proved to be very suitable. 
Several areas were identified for improvement in addition to the original objectives of interpolation 
and dynamics, and are discussed below. 
 
Pure anisotropic lighting was used for the fur, but it soon became clear that areas of hair pointing 
towards the camera were being rendered too dark. This was because the reflective lighting that 
would be cast upon these hairs from those around them was not modelled. To resolve this, a small 
Lambertian diffuse component was added to the lighting model, and proved to be a great 
improvement. Another property of lighting that was developed further is fur-over-fur shadowing. 
The solution is based around the Bank’s Approximation method, which darkens the sections of fur 
closest to the skin. Considerations of light direction and hair density were added to this model to 
produce an affective shadowing function for short hair. 
 
Another area considered in detail was the colouration of the individual hairs. An offset map 
approach was initially selected, but as the colouration procedure became more complex it was 
decided that the benefit of this feature was not worth the computation costs – an assumption which 
later comparisons with existing systems confirmed. The concept of hair colour variance was also 
developed to enhance the indication of individual hairs, giving more volume to the resulting image. 
 
A successful approach was also found for the hair interpolation problem indicated at the start of the 
project. This makes use of a dominance map to indicate how long it takes for each individual hair 
to disappear as the fur types merge in to one another. A secondary program (FurMak) was also 
developed to prepare models for use in this system, which also includes a reasonably flexible fur 
generator for constructing the fur types. 
 
The final area of dynamics was also fully implemented, although the physics behind it are 
somewhat primitive. However, the underlying physics engine could be easily changed without any 
need to recode any of the fur ‘bending’ procedure itself. Another benefit of the dynamics approach 
is that it is independent of any animation methods used on the creature being modelled. That is, it 
relies purely on detecting the world space location of points in space, so will continue to work 
correctly regardless of what methodology is implemented for animating the model itself. 
 
The only slight problem encountered during the project is that of efficiency. The method in which 
the polygon data is send to the GPU could easily be improved, but as the bottleneck is in the 
Shader Programs most of the time it is unclear what degree of improvement this would produce. 
However, considerations are made for the future of the method, and it can be said, with relevant 
certainty, that graphics hardware will soon be powerful enough to make this a very worthwhile 
method for rendering real-time fur. 
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Appendix – Shader Programs 
 
 
Shell Vertex Program 
 
struct appdata 
{ 
  float4 position : POSITION; 
  float3 normal   : NORMAL; 
  float3 texCoord : TEXCOORD0;  // X,Y -> (U,V) : Z   -> Existance 
  float2 colCoord : TEXCOORD1; 
  float3 tangent  : TEXCOORD2; 
  float4 wind     : TEXCOORD3;  // X, Y, Z -> WIND : W -> HAIR LENGTH 
  float3 color    : COLOR; 
}; 
 
struct vfconn 
{ 
  float4 oPos : POSITION; 
  float4 oTex : TEXCOORD0;  // X,Y -> (U,V) : Z   -> Existance : W   -> Layer 
  float2 oCMT : TEXCOORD1; 
  float3 oCol : TEXCOORD2; 
  float4 oLight : TEXCOORD3; 
}; 
 
vfconn main(appdata IN, 
    uniform float4x4 modelViewProj, 
    uniform float3 eyePosition, 
    uniform float3 lightColor, 
    uniform float3 lightPosition, 
    uniform float displacement, 
    uniform float density) 
{        
  vfconn OUT; 
 
  //Get bend values 
  float3 localBend = IN.wind.xyz - (dot(IN.normal, IN.wind.xyz) * IN.normal); 
  float force = length(localBend); 
  if(force > 1.0) { 
    localBend = normalize(localBend); 
    force = 1.0; 
  } 
   
  //Calculate bend factors 
  float d2 = displacement * displacement; 
  float f2 = force * force; 
  float wf = (0.861986 * force) - (0.176676 * f2); 
  float hf = 1.0 - (0.04743 * force) - (0.36726 * f2); 
  hf = (hf * d2) + (displacement * (1 - displacement)); 
  wf = wf * d2; 
   
  //Set displacement 
  float4 nww; 
         nww.xyz = (IN.normal * hf * IN.wind.w) + (localBend * wf * IN.wind.w); 
         nww.w = 0.0; 
          
  //Set position, and texture co-ordinates 
  float4 PS = mul(modelViewProj, (IN.position + nww)); 
  OUT.oPos = PS; 
  OUT.oTex.xyz = IN.texCoord.xyz; 
  OUT.oTex.w = displacement; 
  OUT.oCMT = IN.colCoord; 
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  //Set per-pixel lighting data   
  float3 L = normalize(lightPosition - IN.position.xyz); 
  float3 binormal = cross(IN.tangent, IN.normal); 
  float3x3 rotation = float3x3(IN.tangent, binormal, IN.normal); 
  OUT.oLight.xyz = mul(rotation, L); 
 
  //Lighting Components 
  float3 ambient = {0.2, 0.2, 0.2}; 
  float diffuse = max(dot(L - (dot(IN.normal, L) * IN.normal), L), 0); 
  float ddiffuse = max(dot(IN.normal, L), 0); 
  float3 HW = normalize(L + normalize(eyePosition - IN.position.xyz)); 
  float specular = pow(max(dot(HW - (dot(IN.normal, HW) * IN.normal), HW), 
                       0),50); 
   
  //Shadow Components 
  float FoFSP = (1 - max(dot(IN.normal, L),0)); 
  float FoFS = clamp(((4 * (displacement / density)) - (3 * FoFSP))/ FoFSP,  
                 0.0 + (1.0 - density), 1.0); 
  float Shadow = min(FoFS, saturate(dot(L, IN.normal) + 0.5)); 
   
  OUT.oLight.w = Shadow; 
  OUT.oCol = ambient + (((diffuse * 0.35) + (ddiffuse * 0.2) +  
             (specular * 0.25)) * lightColor * Shadow); 
 
  return OUT; 
} 

 
 
Shell Fragment Program 
 
struct appdata 
{ 
  float4 texCoord : TEXCOORD0;  // X,Y -> (U,V) : Z -> Existance : W -> Layer 
  float2 colCoord : TEXCOORD1; 
  float3 color    : TEXCOORD2; 
  float4 lightDir : TEXCOORD3; 
}; 
 
float3 expand(float3 v) { 
  return normalize((v - 0.5) * 2); 
} 
 
void main(appdata IN, 
    uniform sampler2D shellTex, 
    uniform sampler2D shellCol, 
    uniform sampler2D shellNorm, 
    out float4 Color : COLOR) 
{ 
  // Texture co-ordinates 
  float4 DomRef = tex2D(shellTex, IN.texCoord.xy); 
  float4 ColRef = tex2D(shellCol, IN.colCoord); 
  
  // Per pixel Lighting 
  //float3 light = normalize(IN.lightDir.xyz); 
  //float3 normal = expand(tex2D(shellNorm, IN.texCoord.xy).xyz); 
  //float LH = dot(normal, light); 
  //float3 HN = normalize(light - (LH * normal)); 
  //float diffuseLight = dot(HN, light); 
  //float3 diffuse = 0.5 * diffuseLight * IN.lightDir.w; 
  //float3 diffuse = float3(0.5, 0.5, 0.5); 
 
  //Set color, alpha 
  Color.xyz = ColRef.xyz * IN.color * DomRef.x; 
  Color.w = 0.0; 
  float exist = max(2.0 - (2.0 * ((1 - IN.texCoord.z) / DomRef.y)), 0); 
  if(IN.texCoord.w <= exist) Color.w = DomRef.z; 
} 
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Fin Vertex Program 
 
struct appdata 
{ 
  float4 position : POSITION; 
 float3 normal   : NORMAL; 
 float4 texCoord : TEXCOORD0; // X -> U : Y -> Existance 
       // Z   -> Reverse Displacement (Fins) 
 float2 colCoord : TEXCOORD1; 
 float3 tangent  : TEXCOORD2; 
 float4 wind     : TEXCOORD3; // X, Y, Z -> WIND : W -> HAIR LENGTH 
 float3 color    : COLOR; 
}; 
 
struct vfconn 
{ 
  float4 oPos : POSITION; 
  float4 oTex : TEXCOORD0; // X,Y   -> U,V : Z  -> Existance : W  -> Alpha 
  float2 oCMT : TEXCOORD1; 
  float3 oCol : TEXCOORD2; 
  float4 oLight : TEXCOORD3; 
}; 
 
vfconn main(appdata IN, 
    uniform float4x4 modelViewProj, 
    uniform float3 eyePosition, 
    uniform float3 lightColor, 
    uniform float3 lightPosition, 
    uniform float displacement, 
    uniform float density) 
{      
  vfconn OUT; 
 
  //Get bend values 
  float3 localBend = IN.wind.xyz - (dot(IN.normal, IN.wind.xyz) * IN.normal); 
  float force = length(localBend); 
  if(force > 1.0) { 
    localBend = normalize(localBend); 
    force = 1.0; 
  } 
   
  float disp2 = displacement - IN.texCoord.z; 
   
  //Calculate bend factors 
  float d2 = disp2 * disp2; 
  float f2 = force * force; 
  float wf = (0.861986 * force) - (0.176676 * f2); 
  float hf = 1.0 - (0.04743 * force) - (0.36726 * f2); 
  hf = (hf * d2) + (disp2 * (1 - disp2)); 
  wf = wf * d2; 
   
  //Set displacement 
  float4 nww; 
         nww.xyz = (IN.normal * hf * IN.wind.w) + (localBend * wf * IN.wind.w); 
         nww.w = 0.0; 
          
  //Set position, and texture co-ordinates 
  float4 PS = mul(modelViewProj, (IN.position + nww)); 
  OUT.oPos = PS; 
  OUT.oTex.y = disp2; 
  OUT.oTex.xz = IN.texCoord.xy; 
  OUT.oTex.w = 1.0 - abs(dot(IN.normal, normalize(eyePosition –  
                                                  IN.position.xyz)) * 3.0); 
  OUT.oCMT = IN.colCoord; 
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  //Set per-pixel lighting data   
  float3 L = normalize(lightPosition - IN.position.xyz); 
  //float3 binormal = cross(IN.tangent, IN.normal); 
  //float3x3 rotation = float3x3(IN.tangent, binormal, IN.normal); 
  OUT.oLight.xyz = L; 
 
  //Lighting Components 
  float3 ambient = {0.2, 0.2, 0.2}; 
  float diffuse = max(dot(L - (dot(IN.normal, L) * IN.normal), L), 0); 
  float ddiffuse = max(dot(IN.normal, L), 0); 
  float3 HW = normalize(L + normalize(eyePosition - IN.position.xyz)); 
  float specular = pow(max(dot(HW - (dot(IN.normal, HW) * IN.normal), HW), 
                    0),50); 
   
  //Shadow Components 
  float FoFSP = (1 - max(dot(IN.normal, L),0)); 
  float FoFS = clamp(((4 * (disp2 / density)) - (3 * FoFSP))/ FoFSP, 0.0, 1.0); 
  float Shadow = min(FoFS, saturate(dot(L, IN.normal) + 0.6)); 
   
  OUT.oLight.w = Shadow; 
  OUT.oCol = ambient + (((diffuse * 0.35) + (ddiffuse * 0.2) +  
                       (specular * 0.25)) * lightColor * Shadow); 
  //OUT.oCol = ambient * 5.0; 
 
  return OUT; 
} 

 
Fin Fragment Program 
 
struct appdata 
{ 
  float4 texCoord : TEXCOORD0;  // X,Y -> (U,V) : Z   -> Existance 
         // W   -> Alpha 
  float2 colCoord : TEXCOORD1;  // X,Y -> (U,V) 
  float3 color    : TEXCOORD2; 
  float4 lightDir : TEXCOORD3; 
}; 
 
float3 expand(float3 v) { 
  return normalize((v - 0.5) * 2); 
} 
 
void main(appdata IN, 
    uniform sampler2D finTex, 
    uniform sampler2D finCol, 
    uniform sampler2D finNorm, 
    out float4 Color : COLOR) 
{ 
  // Texture co-ordinates 
  float4 FinRef = tex2D(finTex, IN.texCoord.xy); 
  float4 ColRef = tex2D(finCol, IN.colCoord); 
   
  // Per pixel Lighting 
  //float3 light = normalize(IN.lightDir.xyz); 
  //float3 normal = expand(tex2D(shellNorm, IN.texCoord.xy).xyz); 
  //float LH = dot(normal, light); 
  //float3 HN = normalize(light - (LH * normal)); 
  //float diffuseLight = dot(HN, light); 
  //float3 diffuse = 0.4 * diffuseLight; 
  //float3 diffuse = float3(0.5, 0.5, 0.5); 
 
  //Set color, alpha 
  Color.xyz = ColRef.xyz * IN.color * FinRef.x; 
  Color.w = 0.0; 
  float exist = max(2.0 - (2.0 * ((1 - IN.texCoord.z) / FinRef.y)), 0); 
  if(IN.texCoord.y <= exist) Color.w = FinRef.z * IN.texCoord.w; 
} 
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Whiskers Vertex Program 
 
struct appdata 
{ 
  float4 position : POSITION; 
  float3 normal   : NORMAL; 
  float4 wind     : TEXCOORD0;  // X, Y, Z -> WIND : W -> HAIR LENGTH 
  float3 color    : COLOR; 
}; 
 
struct vfconn 
{ 
  float4 oPos : POSITION; 
  float3 oCol : COLOR; 
}; 
 
vfconn main(appdata IN, 
    uniform float4x4 modelViewProj) 
{        
  vfconn OUT; 
 
  //Get bend values 
  float3 localBend = IN.wind.xyz - (dot(IN.normal, IN.wind.xyz) *  
                                    IN.normal); 
  float force = length(localBend); 
  if(force > 1.0) { 
    localBend = normalize(localBend); 
    force = 1.0; 
  } 
   
  //Calculate bend factors 
  float d2 = IN.position.w * IN.position.w; 
  float f2 = force * force; 
  float wf = (0.861986 * force) - (0.176676 * f2); 
  float hf = 1.0 - (0.04743 * force) - (0.36726 * f2); 
  hf = (hf * d2) + (IN.position.w * (1 - IN.position.w)); 
  wf = wf * d2; 
   
  //Set position 
  float4 npos; 
        npos.xyz = IN.position.xyz + (IN.normal * hf * IN.wind.w) +  
                                     (localBend * wf * IN.wind.w); 
        npos.w = 1; 
  float4 PS = mul(modelViewProj, npos); 
  OUT.oPos = PS; 
 
  OUT.oCol = IN.color; 
 
  return OUT; 
} 



 

 

 


